

UPDATE \& ELABORATION OF FLEXIBILITY ASSESSMENT STUDY FOR DIFFERENT RES PENETRATION SCENARIOS
 FINAL REPORT
 UKRAINE ENERGY SECURITY PROJECT
 CONTRACT NO. 720I2II8C00003

(DELETE THIS BLANK PAGE AFTER CREATING PDF. IT'S HERE TO MAKE FACING PAGES AND LEFT/RIGHT PAGE NUMBERS SEQUENCE CORRECTLY IN WORD. BE CAREFUL TO NOT DELETE THIS SECTION BREAK EITHER, UNTIL AFTER YOU HAVE GENERATED A FINAL PDF. IT WILL THROW OFF THE LEFT/RIGHT PAGE LAYOUT.)

This document is made possible by the support of the American People through the United States Agency for International Development (USAID). The contents of this report are the sole responsibility of Tetra Tech, Inc., and does not necessarily reflect the views of USAID or the United States Government. This document was prepared by Tetra Tech, Inc. and AF Consult for the Ukraine Energy Security Project (ESP), USAID Contract 72012118C00003.

USAID

MR. ȘÜKRÜ BOĞUT
TASK ORDER CONTRACTING OFFICER'S REPRESENTATIVE
USAID/UKRAINE
KIEV, UKRAINE

TETRA TECH ES, INC.
MERCADOS ARIES INTERNATIONAL
1320 NORTH COURTHOUSE ROAD
SUITE 600
ARLINGTON, VA 2220।
TEL: +703-387-2990
WWW.TETRATECH.COM

LIST OF ACRONYMS AND ABBREVIATIONS

AC	Alternative Current
CAPEX	Capital Expenditures
CAGR	Compound Annual Growth Rate
CF	Capacity Factor
CHPP	Combined Heat and Power Plant
DC	Direct Current
DR	Demand Response
ENSO-E	European Network of Transmission System Operators for Electricity
EPRI	Electric Power Research Institute
ESP	Energy Security Project
EUR	Expected Unserved Ramping
HPP	Hydro Power Plant
IPS	Integrated Power System
GW	Gigawatt
GWh	Gigawatt-hour
MW	Megawatt
MWh	Megawatt-hour
NGPP	Natural Gas Power Plant
NPP	Nuclear Power Plant
OPEX	Operational Expenses
RE	Renewable Energy
REPI	RES Energy Penetration Index
RES	Renewable Energy Sources
RES-CMS	RES Curtailment Management System
RL	Residual Load
RLPI	RES Load Penetration Index
RTU	Remote Terminal Unit
PFD	Period of Flexibility Deficit
PS	Power System
PSHPP	Pump Storage Hydro Power Plant
PP	Power Plant
PV	Photovoltaic
REPI	RES Energy Penetration Index
RLPI	RES Load Penetration Index
SCADA	Supervisory Control and Data Acquisition
SPP	Solar Power Plant
STLFS	Short Term Load Forecast System
STRESFS	Short Term RES Forecasting System
TPP	Thermal Power Plant
TSO	Transmission System Operator
TWh	Terawatt-hour
USAID	U.S. Agency for International Development
WPP	Wind Power Plant

CONTENTS

CONTENTS 3

1. EXECUTIVE SUMMARY 9
1.1. Overview of Study Results 9
1.2. Review of Recent Flexibility Assessment Studies for Ukraine PS 14
2. INTRODUCTION 23
2.1. Background 23
2.2. Objectives of the Study 23
2.3. Overview of the Tasks 24
2.4. About the Content of the Report 24
3. METHODOLOGY and TECHNICAL STUDIES 26
3.1. Problem Statement and Approach 26
3.2. Flexibility Assessment Methodology 27
3.3. Scenarios 30
3.4. Assumptions 40
4. RESULTS of the ANALYSES 43
4.1. Validation of the Model Developed for This Study 43
4.2. Detailed Results for Evaluated Scenarios 45
5. ECONOMIC ASSESSMENT of FLEXIBILITY OPTIONS 126
6. CONCLUSION and DISCUSSIONS 130
6.1. Conclusion 130
6.2. Pro-Active RES Curtailment for Upward Ramping 133
6.3. Limitations of the Study 135
6.4. Other Observations 135
7. APPENDIX - ILLUSTRATIONS for ANALYSES RESULTS 137
7.1. Detailed Results of Load and Residual Load Duration Curves 138
7.2. Detailed Results of Probabilistic Distribution of (1-RL\%) in \% of Load 178
7.3. Detailed Results of Probabilistic Distribution of RES Ramp Ratio in \% of Load 218
7.4. Detailed Results of Chromatic Illustration of RL in \% of Load 258
7.5. Daily Profiles - As-Is and Selected Scenarios for 2021 and 2025 298
LIST OF TABLES
Table I: Results Summary Sheet for 2021 and 2025 RES Penetration Scenarios (hours) II
Table 2: RES Penetration Level Scenarios Analyzed in This Study. 31
Table 3: Set of Assumptions for Flexibility Assessment. 40
Table 4: 202I Mainland with WPP Installed Capacity: 2,585 MW and SPP Installed Capacity: 6,24I MW (RES Connection Forecast of Ukrenergo for end of 2021). 47
Table 5: 202I Mainland with WPP Installed Capacity: 2,585 MW and SPP Installed Capacity: 6,24I MW (RES Connection Forecast of Ukrenergo for end of 2021) 48
Table 6: 202 I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,000 MW (RESPenetration Scenario in Ukrenergo's Generation Adequacy Report)*.49
Table 7: 202I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)* 50
Table 8: 202I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 5,000 MW 51
Table 9: 202I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 6,000 MW 52
Table I0: 202I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 6,000 MW 53
Table II: 202I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 7,000 MW 54
Table I2: 202 I Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 6,000 MW 55
Table I3: 2021 Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,000 MW 56
Table I4: 202I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,500 MW 57
Table 15: 2021 Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,500 MW 58
Table 16: 2021 Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 8,000 MW 59
Table 17: 202I Mainland with WPP Installed Capacity: 2,585 MW and SPP Installed Capacity: 6,24I MW (RES Connection Forecast of Ukrenergo for end of 202I) 60
Table 18: 202 I Mainland with WPP Installed Capacity: 2,585 MW and SPP Installed Capacity: 6,24I MW (RES Connection Forecast of Ukrenergo for end of 202I) 61
Table 19: 2021 Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,000 MW (RESPenetration Scenario in Ukrenergo's Generation Adequacy Report)*62
Table 20: 2021 Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*. 63
Table 2I: 202I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 5,000 MW 64
Table 22: 202I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 6,000 MW 65
Table 23: 202I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 6,000 MW 66
Table 24: 202I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 7,000 MW 67
Table 25: 202I Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 6,000 MW 68
Table 26: 202I Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,000 MW 69
Table 27: 202I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,500 MW 70
Table 28: 2021 Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,500 MW 71
Table 29: 202I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 8,000 MW 72
Table 30: 202I Mainland with WPP Installed Capacity: $2,585 \mathrm{MW}$ and SPP Installed Capacity: 6,24I MW (RESConnection Forecast of Ukrenergo for end of 202I).73
Table 3I: 202I Mainland with WPP Installed Capacity: 2,585 MW and SPP Installed Capacity: 6,24I MW (RES Connection Forecast of Ukrenergo for end of 202I) 74
Table 32: 202 I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*. 75
Table 33: 2021 Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,000 MW (RESPenetration Scenario in Ukrenergo's Generation Adequacy Report)*.76
Table 34: 202I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 5,000 MW 77
Table 35: 202 I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 6,000 MW 78
Table 36: 202I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 6,000 MW 79
Table 37: 202I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 7,000 MW 80
Table 38: 202I Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 6,000 MW 81
Table 39: 202 I Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,000 MW 82
Table 40: 202 I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,500 MW 83
Table 4I: 202I Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,500 MW 84
Table 42: 202I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 8,000 MW 85
Table 43: 2025 Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,500 MW (Min RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)* 86
Table 44: 2025 Mainland with WPP Installed Capacity: 3,000 MW and SPP Installed Capacity: 9,500 MW (Medium RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)* 87
Table 45: 2025 Mainland with WPP Installed Capacity: 7,500 MW and SPP Installed Capacity: 12,000 MW (HighRES Penetration Scenario in Ukrenergo's Generation Adequacy Report)* ... 88
Table 46: 2025 Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 8,000 MW 89
Table 47: 2025 Mainland with WPP Installed Capacity: 3,500 MW and SPP Installed Capacity: 9,000 MW 90
Table 48: 2025 Mainland with WPP Installed Capacity: 4,000 MW and SPP Installed Capacity: 10,000 MW 91
Table 49: 2025 Mainland with WPP Installed Capacity: 5,000 MW and SPP Installed Capacity: 10,000 MW 92
Table 50: 2025 Mainland with WPP Installed Capacity: 4,000 MW and SPP Installed Capacity: I2,000 MW 93
Table 5I: 2025 Mainland with WPP Installed Capacity: 4,500 MW and SPP Installed Capacity: I2,500 MW 94
Table 52: 2025 Mainland with WPP Installed Capacity: 5,000 MW and SPP Installed Capacity: I3,000 MW 95
Table 53: 2025 Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,500 MW (MinRES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*96
Table 54: 2025 Mainland with WPP Installed Capacity: 3,000 MW and SPP Installed Capacity: 9,500 MW (Medium RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)* 97
Table 55: 2025 Mainland with WPP Installed Capacity: 7,500 MW and SPP Installed Capacity: 12,000 MW (HighRES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*98
Table 56: 2025 Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 8,000 MW 99
Table 57: 2025 Mainland with WPP Installed Capacity: 3,500 MW and SPP Installed Capacity: 9,000 MW 100
Table 58: 2025 Mainland with WPP Installed Capacity: 4,000 MW and SPP Installed Capacity: 10,000 MW.... 10 I
Table 59: 2025 Mainland with WPP Installed Capacity: 5,000 MW and SPP Installed Capacity: 10,000 MW 102
Table 60: 2025 Mainland with WPP Installed Capacity: 4,000 MW and SPP Installed Capacity: I2,000 MW 103
Table 6I: 2025 Mainland with WPP Installed Capacity: 4,500 MW and SPP Installed Capacity: 12,500 MW.... 104
Table 62: 2025 Mainland with WPP Installed Capacity: 5,000 MW and SPP Installed Capacity: 13,000 MW.... 105
Table 63: 2025 Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,500 MW (MinRES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*106
Table 64: 2025 Mainland with WPP Installed Capacity: 3,000 MW and SPP Installed Capacity: 9,500 MW (MediumRES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*107
Table 65: 2025 Mainland with WPP Installed Capacity: 7,500 MW and SPP Installed Capacity: I2,000 MW (High RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)* 108
Table 66: 2025 Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 8,000 MW 109
Table 67: 2025 Mainland with WPP Installed Capacity: 3,500 MW and SPP Installed Capacity: 9,000 MW 110
Table 68: 2025 Mainland with WPP Installed Capacity: 4,000 MW and SPP Installed Capacity: I0,000 MW.... I I
Table 69: 2025 Mainland with WPP Installed Capacity: 5,000 MW and SPP Installed Capacity: 10,000 MW I I2
Table 70: 2025 Mainland with WPP Installed Capacity: 4,000 MW and SPP Installed Capacity: I2,000 MW.... I I3
Table 7I: 2025 Mainland with WPP Installed Capacity: 4,500 MW and SPP Installed Capacity: I2,500 MW.... I I4
Table 72: 2025 Mainland with WPP Installed Capacity: 5,000 MW and SPP Installed Capacity: 13,000 MW... II5
Table 73: 2025 Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,500 MW (MinRES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*116
Table 74: 2025 Mainland with WPP Installed Capacity: 3,000 MW and SPP Installed Capacity: 9,500 MW (Medium RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)* 117

Table 75: 2025 Mainland with WPP Installed Capacity: 7,500 MW and SPP Installed Capacity: 12,000 MW (High
RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)* . 118
Table 76: 2025 Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 8,000 MW I I 9
Table 77: 2025 Mainland with WPP Installed Capacity: 3,500 MW and SPP Installed Capacity: 9,000 MW I20
Table 78: 2025 Mainland with WPP Installed Capacity: 4,000 MW and SPP Installed Capacity: 10,000 MW I2 I
Table 79: 2025 Mainland with WPP Installed Capacity: 5,000 MW and SPP Installed Capacity: 10,000 MW 122
Table 80: 2025 Mainland with WPP Installed Capacity: 4,000 MW and SPP Installed Capacity: I2,000 MW I23
Table 8I: 2025 Mainland with WPP Installed Capacity: 4,500 MW and SPP Installed Capacity: 12,500 MW 124
Table 83: 2025 Mainland with WPP Installed Capacity: 5,000 MW and SPP Installed Capacity: I3,000 MW I 25

LIST OF FIGURES

Figure I: Result for May 2019 - May 2020 in the Model 43
Figure 2: RES Restriction in IPS of Ukraine between May 2019-May 2020 44
Figure 3: Day with Max HPP, May 24th: As-Is. 298
Figure 4: May 24th: Scenario: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, I0\% NPP Reduction, 0\% CHPP Reduction 298
Figure 5: May 24th: Scenario: 202I, 0,5\% Yearly Growth, Interconnected, 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction. 299
Figure 6: May 24th: Scenario: 202I, 0,5\% Yearly Growth, Isolated, 6,24IMW Solar, 2,585MW Wind, 7,5\% NPPReduction, 0\% CHPP Reduction299
Figure 7: May 24th: Scenario: 2025, I,2\% Yearly Growth, Interconnected, 7,500MW Solar, 2,500MW Wind, I0\%
NPP Reduction, 0\% CHPP Reduction 300
Figure 8: May 24th: Scenario: 2025, I,2\% Yearly Growth, Interconnected, 9,500MW Solar, 3,000MW Wind, I0\% NPP Reduction, 10% CHPP Reduction 300
Figure 9: May 24th: Scenario: 2025, I,2\% Yearly Growth, Interconnected, 12,000MW Solar, 7,500MW Wind,50\% NPP Reduction, 20\% CHPP Reduction301
Figure IO: July IOth Summer Wednesday: As-Is 301
Figure II: July IOth Summer Wednesday: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind,10\% NPP Reduction, 0\% CHPP Reduction.302
Figure I2: July IOth Summer Wednesday: 2021, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction 302
Figure I3: July IOth Summer Wednesday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction 303
Figure 14: July IOth Summer Wednesday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind,10\% NPP Reduction, 0\% CHPP Reduction.303
Figure I5: July IOth Summer Wednesday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, I0\% CHPP Reduction 304
Figure 16: July 10th Summer Wednesday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW
Wind, 50\% NPP Reduction, 20\% CHPP Reduction 304
Figure 17: July 21st Summer Sunday: As-Is 305
Figure I8: July 2 Ist Summer Sunday: 202I, 0,0\% Yearly Growth, Intercon. 6,24 IMW Solar, 2,585MW Wind, I0\%
NPP Reduction, 0\% CHPP Reduction. 305
Figure 19: July 2 Ist Summer Sunday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind,7,5\% NPP Reduction, 0\% CHPP Reduction.306
Figure 20: July 2 I st Summer Sunday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction 306
Figure 2 I: July 2 Ist Summer Sunday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, I0\% NPP Reduction, 0\% CHPP Reduction. 307
Figure 22: July 2 I st Summer Sunday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, I0\%NPP Reduction, I0\% CHPP Reduction307
Figure 23: July 2 Ist Summer Sunday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind,
50\% NPP Reduction, 20\% CHPP Reduction 308
Figure 24: July 27th Summer Saturday: As-Is 308
Figure 25: July 27th Summer Saturday: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction. 309
Figure 26: July 27th Summer Saturday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind,
7,5\% NPP Reduction, 0\% CHPP Reduction. 309
Figure 27: July 27th Summer Saturday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\%
NPP Reduction, 0\% CHPP Reduction. 310
USAID.GOV
Figure 28: July 27th Summer Saturday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind,10\% NPP Reduction, 0\% CHPP Reduction.. 310
Figure 29: July 27th Summer Saturday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind,
10\% NPP Reduction, I0\% CHPP Reduction 311
Figure 30: July 27th Summer Saturday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind,50\% NPP Reduction, 20\% CHPP Reduction311
Figure 3I: Oct 9th Autumn Wednesday: As-Is 312
Figure 32: Oct 9th Autumn Wednesday: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind,
10\% NPP Reduction, 0\% CHPP Reduction 312
Figure 33: Oct 9th Autumn Wednesday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind,
7,5\% NPP Reduction, 0\% CHPP Reduction 313
Figure 34: Oct 9th Autumn Wednesday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction 313
Figure 35: Oct 9th Autumn Wednesday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction 314
Figure 36: Oct 9th Autumn Wednesday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, I0\% CHPP Reduction 314
Figure 37: Oct 9th Autumn Wednesday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind,
50\% NPP Reduction, 20\% CHPP Reduction 315
Figure 38: Oct 20th Autumn Sunday: As-Is. 315
Figure 39: Oct 20th Autumn Sunday: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction 316
Figure 40: Oct 20th Autumn Sunday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction. 316
Figure 4I: Oct 20th Autumn Sunday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction 317
Figure 42: Oct 20th Autumn Sunday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind,10\% NPP Reduction, 0\% CHPP Reduction 317
Figure 43: Oct 20th Autumn Sunday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, I0\% CHPP Reduction 318
Figure 44: Oct 20th Autumn Sunday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind,
50\% NPP Reduction, 20\% CHPP Reduction 318
Figure 45: Oct 26th Autumn Saturday: As-Is. 319
Figure 46: Oct 26th Autumn Saturday: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind,10\% NPP Reduction, 0\% CHPP Reduction319
Figure 47: Oct 26th Autumn Saturday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction. 320
Figure 48: Oct 26th Autumn Saturday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction 320
Figure 49: Oct 26th Autumn Saturday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction 321
Figure 50: Oct 26th Autumn Saturday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind,10\% NPP Reduction, 10\% CHPP Reduction321
Figure 5I: Oct 26th Autumn Saturday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind,
50\% NPP Reduction, 20\% CHPP Reduction 322
Figure 52: Jan 7th Christmas Day: As-Is 322
Figure 53: Jan 7th Christmas Day: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, I0\% NPP Reduction, 0\% CHPP Reduction. 323
Figure 54: Jan 7th Christmas Day: 202I, 0,5\% Yearly Growth, Intercon. 6,24 IMW Solar, 2,585MW Wind, 7,5\%
NPP Reduction, 0\% CHPP Reduction 323
Figure 55: Jan 7th Christmas Day: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPPReduction, 0\% CHPP Reduction324
Figure 56: Jan 7th Christmas Day: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, I0\%NPP Reduction, 0\% CHPP Reduction324
Figure 57: Jan 7th Christmas Day: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, I0\% NPP Reduction, 10\% CHPP Reduction 325
Figure 58: Jan 7th Christmas Day: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind, 50\%
NPP Reduction, 20\% CHPP Reduction 325
Figure 59: Jan 19th Winter Sunday: As-Is 326
Figure 60: Jan I9th Winter Sunday: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, I0\%NPP Reduction, 0\% CHPP Reduction.326
Figure 6I: Jan 19th Winter Sunday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction. 327
Figure 62: Jan 19th Winter Sunday: 2021, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP
Reduction, 0\% CHPP Reduction 327
Figure 63: Jan 19th Winter Sunday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, I0\%NPP Reduction, 0\% CHPP Reduction328
Figure 64: Jan 19th Winter Sunday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, I0\%NPP Reduction, I0\% CHPP Reduction328
Figure 65: Jan I9th Winter Sunday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction 329
Figure 66: Jan 22nd Winter Wednesday: As-Is 329
Figure 67: Jan 22nd Winter Wednesday: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction. 330
Figure 68: Jan 22nd Winter Wednesday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind,7,5\% NPP Reduction, 0\% CHPP Reduction.330
Figure 69: Jan 22nd Winter Wednesday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\%NPP Reduction, 0\% CHPP Reduction331
Figure 70: Jan 22nd Winter Wednesday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction 331
Figure 7I: Jan 22nd Winter Wednesday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 33210\% NPP Reduction, I0\% CHPP Reduction
Figure 72: Jan 22nd Winter Wednesday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind,50\% NPP Reduction, 20\% CHPP Reduction332
Figure 73: Jan 25th Winter Saturday: As-Is 333
Figure 74: Jan 25th Winter Saturday: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction 333
Figure 75: Jan 25th Winter Saturday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction. 334
Figure 76: Jan 25th Winter Saturday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPPReduction, 0\% CHPP Reduction.334
Figure 77: Jan 25th Winter Saturday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction 335
Figure 78: Jan 25th Winter Saturday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction 335
Figure 79: Jan 25th Winter Saturday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind,
50\% NPP Reduction, 20\% CHPP Reduction 336
Figure 80: Feb IIst Maximum Load Day: As-Is 336
Figure 8I: Feb I Ist Maximum Load Day: 202 I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind,10\% NPP Reduction, 0\% CHPP Reduction.337
Figure 82: Feb I Ist Maximum Load Day: 202 I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction 337
Figure 83: Feb I Ist Maximum Load Day: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction 338
Figure 84: Feb I Ist Maximum Load Day: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction 338
Figure 85: Feb I Ist Maximum Load Day: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind,
10\% NPP Reduction, I0\% CHPP Reduction 339
Figure 86: Feb I I st Maximum Load Day: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction 339
Figure 87: Apr 8th Spring Wednesday: As-Is 340
Figure 88: Apr 8th Spring Wednesday: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction 340
Figure 89: Apr 8th Spring Wednesday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind,
7,5\% NPP Reduction, 0\% CHPP Reduction. 341
Figure 90: Apr 8th Spring Wednesday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction 341
Figure 91: Apr 8th Spring Wednesday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction 342
Figure 92: Apr 8th Spring Wednesday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction 342
Figure 93: Apr 8th Spring Wednesday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind,
50\% NPP Reduction, 20\% CHPP Reduction 343
Figure 94: Apr 19th Spring Sunday: As-Is 343
Figure 95: Apr 19th Spring Sunday: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, I0\%NPP Reduction, 0\% CHPP Reduction.344
Figure 96: Apr I9th Spring Sunday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction 344
Figure 97: Apr 19th Spring Sunday: 2021, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP
Reduction, 0\% CHPP Reduction 345
Figure 98: Apr I9th Spring Sunday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, I0\%NPP Reduction, 0\% CHPP Reduction.345
Figure 99: Apr I9th Spring Sunday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, I0\%NPP Reduction, I0\% CHPP Reduction346
Figure I00: Apr 19th Spring Sunday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction 346
Figure 10I: Apr 25th Spring Saturday: As-Is 347
Figure 102: Apr 25th Spring Saturday: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction 347
Figure I03: Apr 25th Spring Saturday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction 348
Figure 104: Apr 25th Spring Saturday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction 348
Figure I05: Apr 25th Spring Saturday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind,10\% NPP Reduction, 0\% CHPP Reduction.349
Figure I06: Apr 25th Spring Saturday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, I0\% CHPP Reduction ... 349 Figure 107: Apr 25th Spring Saturday: 2025, I,2\% Yearly Growth, Intercon. 12,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction ... 350
Figure I08: May IOth Minimum Load Day: As-Is... 350
Figure I09: May IOth Minimum Load Day: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction 35I
Figure I I0: May 10th Minimum Load Day: 202I, 0,5\% Yearly Growth, Intercon. 6,24 I MW Solar, 2,585MW Wind,
\qquad
Figure III: May IOth Minimum Load Day: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\%
NPP Reduction, 0\% CHPP Reduction.. 352
Figure I I2: May IOth Minimum Load Day: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction 352
Figure I I3: May IOth Minimum Load Day: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, I0\% CHPP Reduction 353
Figure 114: May IOth Minimum Load Day: 2025, 1,2\% Yearly Growth, Intercon. 12,000MW Solar, 7,500MW
Wind, 50\% NPP Reduction, 20\% CHPP Reduction 353

I. EXECUTIVE SUMMARY

I.I. OVERVIEW OF STUDY RESULTS

Based on Ukrenergo's request, USAID conducted an independent assessment of different scenarios regarding penetration level of RES (Renewable Energy Sources). The study has been conducted between April 2020 and August 2020, with Ukrenergo technical teams' close collaboration.

Increasing roll-out of intermittent renewable energy sources (i.e. wind and photovoltaic solar power plants) brings in accumulating challenges in terms of matching the variations in the load/generation patterns in Ukraine power system. As further RES is integrated into IPS of Ukraine, flexibility requirements of the system will be increased to sustain secure operation of the power network.

In this study, flexibility has been assessed through calculation of metrics for;

- system residual load (RL) characteristics (Criteria: Residual load to be non-negative for all hours of the year),
- RES ramps as percentage of load (Criteria: RES ramps not to exceed $\pm 10 \%$ of the load for all hours of the year),
- and adequacy of system resources for ramp (up/down) requirements (Criteria: Downward deficit to be lower than I\% of the load for 99% of the hours).

For the analysis, hourly flexibility capacities for each power plant of different characteristics (in the granularity of units for TPPs) are modelled, and a systemwide synthetic flexibility capacity is computed, to be balanced against the ramping requirement due to RES and load ramps.

This study does not include any economic optimization and purely focuses on technical assessment; with estimated hourly dispatch of future generation based on an objective function that maximizes flexibility in the system.

Scenarios have been developed for;

- Years of 202 I and 2025
- Different levels of WPP \& SPP penetration (installed capacity)
- For 202I Scenarios: WPP: I,500MW-2,600MW, SPP: 5,000MW-8,000MW
- For 2025 Scenarios: WPP: 2,500MW - 5,000MW, SPP: 5,000MW - I3,000MW
- Annual load growth rates: No growth, 0.5% and 1.2% annual increase of demand
- Mode of operation of the power system
- Existence of as-is interconnections
- Isolated mode of operation

Simulation results were impacted by three assumption groupings: Future uncertainty, data quality and the need for simplification.

The applied scenarios allow comparison between different RES penetration levels and load growth rates. The summary of the results is presented in the following table below for different scenarios:

- Each row of the table corresponds to a scenario that the flexibility assessment has been performed.
- Annual load growth of 0.5% is used for 202 I and $\mathrm{I} .2 \%$ is used for 2025 in the summary table (detailed results, as well as calculation outputs for other scenarios are provided in Chapter 4 RESULTS of the ANALYSES of this document.)
- For each of the criteria, if the results are within the defined ranges, that cell has been highlighted in green. If the results are violating the limits, they are highlighted in yellow. Limit violations should be interpreted as an indication of the inadequacy of the flexibility of the existing system for the selected RES penetration level (for certain hours) and the power system will be unable to accommodate it without making some adjustments. Some examples of additional flexibility capabilities that can be considered are;
- increased hydro pumping,
- battery storage, demand-side management,
- curtailment/limiting of renewables.
- The violations are presented both in number of hours in violation, as well energy (MWh) for the hours of violation.

Table I: Results Summary Sheet for 2021 and 2025 RES Penetration Scenarios (hours)

Scenario No	Year of Calculation	Yearly Load Growth	Mode of Operation	RES Penetration Levels		\# of Hours with Negative Residual Load	\# of hours with RES Ramp beyond $\pm 10 \%$ of the system load	Violation \# of hours \& Violation Ramping Deficit (MWh)	Violation \# of hours \& Violation Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Tertiary System Reserves (MW)		Reduction of Yearly Nuclear Generation
				Max WPP Generation (MW)	Max SPP Generation (MW)						$\begin{gathered} 95 \% \text { of } \\ \text { all } \\ \text { hours } \end{gathered}$	Minimum of all hours	
R2I,0.5,SQ-I	2021	0.5\%	Intercon.	2,585	6,24I	0	5	104 \& 149,009	30 \& 10,555	491	1000	695	7.5\%
R21,0.5,SQ-2	2021	0.5\%	Intercon.	2,000	7,000	1	7	I44 \& 205, I5 I	33 \& 11,063	501	1000	694	7.5\%
R2I,0.5,SQ-3	2021	0.5\%	Intercon.	1,500	5,000	0	0	32 \& 49,846	21 \& 7,607	411	1000	959	7.5\%
R2I,0.5,SQ-4	2021	0.5\%	Intercon.	1,500	6,000	0	0	52 \& 78,076	27 \& 9,015	453	1000	838	7.5\%
R2I,0.5,SQ-5	2021	0.5\%	Intercon.	2,000	6,000	0	1	110 \& 166,384	30 \& 9,268	460	1000	775	7.5\%
R2I,0.5,SQ-6	2021	0.5\%	Intercon.	I,500	7,000	0	5	74 \& 116,717	30 \& 10,904	495	1000	744	7.5\%
R2I,0.5,SQ-7	2021	0.5\%	Intercon.	2,500	6,000	0	1	216 \& 299,994	27 \& 9,500	467	1000	721	7.5\%
R2I,0.5,SQ-8	2021	0.5\%	Intercon.	2,500	7,000	15	15	254 \& 340, 164	33 \& 11,207	510	1000	651	7.5\%
R2I,0.5,SQ-9	2021	0.5\%	Intercon.	2,000	7,500	15	13	170 \& 233,520	39 \& 12,162	520	1000	660	7.5\%
R21,0.5,SQ-10	2021	0.5\%	Intercon.	2,500	7,500	9	21	130 \& 189,212	39 \& 13,302	544	1000	620	12.5\%
R21,0.5,SQ-11	2021	0.5\%	Intercon.	2,000	8,000	7	25	100 \& 151,534	39 \& 14,558	560	1000	628	12.5\%
R25,I.2,SQ-I	2025	1.2\%	Intercon.	2,500	7,500	0	11	46 \& 82,024	35 \& 17,478	622	800	368	10.0\%
R25,I.2,ISO-I	2025	1.2\%	Isolated	2,500	7,500	0	11	106 \& 193,784	125 \& 66,882	1,191	600	146	10.0\%
R25, I.2,SQ-2	2025	I.2\%	Intercon.	3,000	9,500	40	105	124 \& 196,248	53 \& 26,306	727	800	295	10.0\%
R25,1.2,ISO-2	2025	1.2\%	Isolated	3,000	9,500	40	105	250 \& 380,343	198 \& 95,718	1,35 I	600	117	10.0\%
R25, I. 2,SQ-3	2025	1.2\%	Intercon.	7,500	12,000	78	598	278 \& 445,365	260 \& 120,687	1,204	800	182	50.0\%
R25,I.2,ISO-3	2025	1.2\%	Isolated	7,500	12,000	141	598	574 \& 902,952	613 \& 288, 100	1,969	600	0	40.0\%
R25,1.2,SQ-4	2025	I.2\%	Intercon.	2,000	8,000	0	13	48 \& 84,612	38 \& 19,523	652	800	373	10.0\%
R25,I.2,ISO-4	2025	1.2\%	Isolated	2,000	8,000	0	13	118 \& 191,249	133 \& 74,129	1,218	600	148	10.0\%
R25,1.2,SQ-5	2025	I.2\%	Intercon.	3,500	9,000	45	70	192 \& 257,236	50 \& 24,035	698	800	292	10.0\%
R25,I.2,ISO-5	2025	1.2\%	Isolated	3,500	9,000	45	70	328 \& 490,116	170 \& 87,336	1,327	600	116	10.0\%
R25,I.2,SQ-6	2025	1.2\%	Intercon.	4,000	10,000	43	172	140 \& 212,712	68 \& 36,449	811	800	260	20.0\%
R25,I.2,ISO-6	2025	1.2\%	Isolated	4,000	10,000	69	172	346 \& 514,868	240 \& 117,590	1,453	600	103	15.0\%
R25,I.2,SQ-7	2025	1.2\%	Intercon.	5,000	10,000	54	213	174 \& 269,079	85 \& 42,116	846	800	240	25.0\%
R25,I.2,ISO-7	2025	1.2\%	Isolated	5,000	10,000	129	208	550 \& 792,909	248 \& I 19,071	1,494	600	95	15.0\%
R25,I.2,SQ-8	2025	1.2\%	Intercon.	4,000	12,000	54	427	190 \& 283,366	133 \& 68,22\|	985	800	230	30.0\%
R25,I.2,ISO-8	2025	1.2\%	Isolated	4,000	12,000	148	434	400 \& 602,984	363 \& 182,415	1,594	600	91	20.0\%
R25,1.2,SQ-9	2025	1.2\%	Intercon.	4,500	12,500	38	541	176 \& 266,070	208 \& 98,435	1,092	800	216	30.0\%
R25,I.2,ISO-9	2025	1.2\%	Isolated	4,500	12,500	154	541	430 \& 663,744	465 \& 217,064	1,749	600	86	25.0\%
R25,1.2,SQ-10	2025	1.2\%	Intercon.	5,000	13,000	45	639	210 \& 310,246	250 \& 120,257	1,165	800	203	40.0\%
R25, I.2,ISO-10	2025	1.2\%	Isolated	5,000	13,000	161	639	466 \& 724,116	553 \& 260, 128	1,872	600	0	30.0\%

Baseline scenarios for 202 I and 2025 are selected as follows:

- 202I-Baseline Scenario (RES capacity that Ukrenergo expects to be connected by the year-end):
- Installed Capacity of WPP: 2,585 MW, Installed Capacity of SPP: 6,24I MW
- Yearly Load Growth Rate: 0.5\%
- Mode of Operation: Interconnected
- 2025-Baseline Scenario-I (Base scenario in Ukrenergo's Generation Adequacy Study):
- Installed Capacity of WPP: 3,000 MW, Installed Capacity of SPP: 9,500 MW
- Yearly Load Growth Rate: I.2\%
- Mode of Operation: Interconnected
- 2025-Baseline Scenario-2 (Base scenario in Ukrenergo's Generation Adequacy Study):
- Installed Capacity of WPP: 3,000 MW, Installed Capacity of SPP: 9,500 MW
- Yearly Load Growth Rate: I.2\%
- Mode of Operation: Isolated mode of operation

Key conclusions and findings of the flexibility assessment are summarized as follows:

- RES penetration levels above 4,300MW installed capacity creates a ramping deficit in IPS of Ukraine with the existing load levels. At this level of RES capacity, our flexibility assessment model has resulted a deficit of in need of RES curtailment of $30 \mathrm{GWh}(35 \text { hours })^{\prime}$ in the last 12 months, till May 2020. This curtailment might have been prevented via an additional flexibility resource of 230 MW (that would work with a 1.5% yearly capacity factor, if this gap would have been filled with new generation capacities)
- In order to have a decreased level of flexibility inadequacy in the system, our model has resulted with a $5-15 \%$ (depends on RES penetration levels) reduction of nuclear generation in 2021. (For baseline scenario, 5% nuclear generation reduction has been required. For higher level of RES penetration levels, higher reduction in the must-run power plants' generation is implemented in 2025).
- Considering the interconnections with neighbor countries as a flexibility resource is an important contributor to reduce the flexibility inadequacy of the system ${ }^{2}$
- Necessity for RES Curtailment and new flexibility resources are inevitable for all scenarios that has been studied for 2021 and 2025.
- For all scenarios in 202 I and 2025; in case the required additional flexibility resource (Upward Ramping Deficit) is met with construction of new power plants, their capacity factor within the year will be lower than 2-3\%.

[^0]- For the Baseline Scenario of $2021\left(8,826 \mathrm{MW}^{3}\right.$ RES installed capacity, 0.5% load growth),
- Downward Ramping Deficit (RES Energy to be Curtailed): I49GWh, which is 1.03% of yearly RES generation (number of hours that system will be forced to RES restriction: 104 hours)
- Upward Ramping Deficit (Energy Required from New Flexible Capacity): 10.5 GWh (in 10 hours)
- Maximum Additional Maneuvering Capacity Required: 49I MW (capacity factor: 0.25\% for upward ramping requirements)
- For the Baseline Scenario-I of 2025 (I2,500MW RES installed capacity, I.2\% annual load growth, interconnected mode of operation),
- Downward Ramping Deficit (RES Energy to be Curtailed): I96GWh, which is 1.02% of yearly RES generation (number of hours that system will be forced to RES restriction: 124 hours)
- Upward Ramping Deficit (Energy Required from New Flexible Capacity): 26.3 GWh (in 53 hours)
- Maximum Additional Maneuvering Capacity Required: 727 MW (capacity factor: 0.41% for upward ramping requirements)
- For the Baseline Scenario-2 of 2025 (I2,500 MW RES installed capacity, I.2\% annual load growth, isolated mode of operation),
- Downward Ramping Deficit (RES Energy to be Curtailed): 380 GWh, which is 1.98% of yearly RES generation (number of hours that system will be forced to RES restriction: 250 hours)
- Upward Ramping Deficit (Energy Required from New Flexible Capacity): 95.7 GWh (in 198 hours)
- Maximum Additional Maneuvering Capacity Required: I35I MW (capacity factor: 0.81\% for upward ramping requirements)
- In comparison with Ukrenergo's Generation Adequacy study results that state that;
- in 2021, 2000 MW of highly maneuverable thermal power plants and 2000 MW of Power Storage capacity,
- and in 2025, 2000 MW of highly maneuverable thermal power plants and 2550 MW of Power Storage capacity
will be required; our results in baseline and interconnected mode of operations showed that,
- in 202I, the maximum upward ramping deficit might be experienced for just 10 hours within the year and the maximum capacity of this deficit is 49IMW,
- and in 2025, the maximum upward ramping deficit might be experienced for 53 hours within the year and the maximum capacity of this deficit is 727 MW ,
- For selection of flexibility resources required, there are variety of options including,

[^1]- RES curtailment for downward ramping requirements and pro-active RES curtailment for upward ramping,
- power storage,
- internal combustion engines,
- additions of new pump storage hydro power plants,
- demand response,
- and modernization of existing thermal power plants to provide more available and flexible capacities
The decision should be made on economic studies in terms of cost/benefit ratios and the time required for implementation. Per our calculations, if the flexibility deficit is met with construction of new power plants, the capacity factors of these new plants will be lower than 1% in 2021 and lower than $\sim 3 \%$ in 2025.
- As the basic economic assessment of the costs of the four flexibility options (RES curtailment for downward ramping requirements and pro-active RES curtailment for upward ramping, power storage, internal combustion engines, additions of new pump storage hydro power plants) show that the most feasible options is considering RES curtailment as a source flexibility is the economically most viable option for 2025 of Ukraine PS. Our study concludes that implementing RES curtailment during infrequent extreme ramping rate events can potentially be a least cost option as compared to investment in low capacity factor generation flexibility. Accurate short-term load, generation and weather forecasting and curtailment automation are however required for effective implementation of this option (which are also considered as costs items in the basic economic assessment of this study).
- Existing installed capacities of WPPs and SPPs indicate that solar generation investment tend to be higher in Ukraine. Wind/solar ratio in RES generation mix is an important factor for the flexibility adequacy of the power system. In this context, scenarios with same installed capacity of wind and solar are less likely to occur. We estimate that solar/wind ratio will be around 3 (solar generation installed capacity will be 3 times of wind installed capacity)
- As higher wind ratio in wind/solar mix brings in more challenges to adequate ramp adjustments in comparison with solar; wind power plants should be more carefully assessed.

I.2. REVIEW OF RECENT FLEXIBILITY ASSESSMENT STUDIES FOR UKRAINE PS

As part of this study, comparative review of recent flexibility assessment studies for IPS of Ukraine has also been developed. Our review has included the comparison of the following studies ${ }^{4}$:

- USAID ESP - Flexibility Assessment Study for Different RES Penetration Scenarios (This Study) - 2020
- Approved Generation Adequacy Study of Ukrenergo - 2019

[^2]- Flexibility to Future-Proof the Ukraine Power System - 2018 (Wartsila)
- Balancing of Fluctuating Renewable Power Sources - 2018 (Berlin Economics)

Results of the studies have been reviewed, as well methodologies, scenarios and assumptions implemented for the assessments. The items for comparison includes the following items:

- Main Results
- RES Penetration Level (MW) @which RES Curtailment is Expected to Start According to the Model Developed
- Recommended New Maneuvering Capacity (MW) and Capacity Factors for 2020
- Recommended New Maneuvering Capacity (MW) and Capacity Factors for 2021 (Baseline or Target Scenario)
- Recommended New Maneuvering Capacity (MW) and Capacity Factors for 2025 (Baseline or Target Scenario)
- RES Curtailment Proposed (GWh, \% of RES generation) for 2020 (for 6 months)
- RES Curtailment Proposed (GWh, \% of RES generation) for 2021 (Baseline or Target Scenario)
- RES Curtailment Proposed (GWh, \% of RES generation) for 2025 (Baseline or Target Scenario)
- Methodology \& Scenarios
- Time Horizon Covered
- Software Tool Used
- Granularity of Inputs (Time Perspective)
- Granularity of Flexibility Assessment (Time Perspective)
- Granularity of Methodology (Generation Modelling)
- Economic Optimization (Optimal Dispatch) Used?
- Objective Function of New Dispatch Calculation
- Fuel Availability/Constraints Considered?
- Definition of Flexibility Adequacy
- Fast/Slow Flexibility Considered?
- RES and Load Forecast Errors Incorporated?
- Thermal Power Plant Technical Constraints/Characteristics Implemented?
- Water Usage Constraints for HPPs Implemented?
- Regimes of Pump-Storage HPPs Considered?
- Availability Parameters of Power Plants Considered?
- Allocated Reserves in the Analysis
- Results of Ancillary Services Performance Tests Incorporated?
- Mode of Operation (Isolated vs. Existing Interconnections)
- Cross-Border Interconnections Considered as a Source of Flexibility?
- RES Curtailment as a Source of Flexibility?
- Load Shedding as a Source of Flexibility?
- NPPs Considered as a Source of Flexibility?
- Reduction of Must-Run Generation (Nuclear) in Base Scenarios
- Part-Loading of Flexible Generation Units
- Decommissioning Status of Thermal Power Plants (2025) (Baseline or Target Scenario)
- Decommissioning Status of Nuclear Power Plants (2025) (Baseline or Target Scenario)
- New Investments for Conventional Power Plants (till 2025)
- Baseline or Target Scenario Definition (2025)
- RES Generation Installed Capacity (2025) (Baseline or Target scenario)
- Yearly Load Growth Assumption (\%)
- Additional Maneuvering Capacity Incorporated in Base Scenario (MW) (2025)

\#	Category	Review Item	USAID ESP - Flexibility Assessment Study for Different RES Penetration Scenarios (This Study) 2020	Approved Generation Adequacy Study of Ukrenergo - 2019	Flexibility to FutureProof the Ukraine Power System 2018 (Wartsila)	Balancing of Fluctuating Renewable Power Sources - 2018 (Berlin Economics)
MI	Methodology \& Scenarios	Date of the Study	2020	2019	2018, Updated in 2020	2018
M2	Methodology \& Scenarios	Time Horizon Covered	2021 and 2025	202I, 2025 and 2030	2020 and 2050	2035
M3	Methodology \& Scenarios	Software Tool Used	Spreadsheet Models	BACS-RVE (+PLEXOS and ANTARES)	PLEXOS	Optimal Dispatch Model (ODM)
M4	Methodology \& Scenarios	Granularity of Inputs (Time Perspective)	Hourly	Hourly	Hourly	Hourly
M5	Methodology \& Scenarios	Granularity of Flexibility Assessment (Time Perspective)	Hourly	Hourly (for characteristic days)	Aggregated hourly and for defined scenarios	Aggregated energy
M6	Methodology \& Scenarios	Granularity of Methodology (Generation Modelling)	Unit Based, for TPPs and HPPs	Unit Based, for TPPs and HPPs	Unit Based, for TPPs and HPPs	Aggregated Power Plants Based on Technology.
M7	Methodology \& Scenarios	Economic Optimization (Optimal Dispatch) Used?	No	Yes	Yes	Yes
M8	Methodology \& Scenarios	Objective Function of New Dispatch Calculation	Maximize Flexibility	Economic Optimization	Economic Optimization	Economic Optimization
M9	Methodology \& Scenarios	Fuel Availability/Constraints Considered?	No	Yes, economically	Yes	No
MIO	Methodology \& Scenarios	Definition of Flexibility Adequacy	4 different criteria have been considered for all 8760 hours of a year. I. Non-zero Residual Load 2. RES Ramps in \% of System Load 3. Downward Ramping Adequacy 4. Upward Ramping Adequacy	Residual load imbalance analysis (based on the results of statistical analysis data on the error of consumption/generation forecasts and their fluctuations)	I.Maximum ramp up rate 2.Maximum ramp down rate	Hourly variability of Load and RES has been cross-checked against flexibility resources in the system
MII	Methodology \& Scenarios	Fast/Slow Flexibility Considered?	Only slow flexibility has been assessed (hourly)	Both fast and slow.	Both fast and slow.	Slow

\#	Category	Review Item	USAID ESP - Flexibility Assessment Study for Different RES Penetration Scenarios (This Study) 2020	Approved Generation Adequacy Study of Ukrenergo - 2019	Flexibility to FutureProof the Ukraine Power System 2018 (Wartsila)	Balancing of Fluctuating Renewable Power Sources - 2018 (Berlin Economics)
MI2	Methodology \& Scenarios	RES and Load Forecast Errors Incorporated?	Yes, 2\% error for RES forecasting and I\% error for load forecasting.	Yes (minimum 20\% of RES generation (MW)). ${ }^{5}$	Yes (20\% of RES generation (MW) is reserved all the time).	No
MI3	Methodology \& Scenarios	Thermal Power Plant Technical Constraints/Characteristics Implemented?	Yes	Yes	Yes	Aggregated form.
MI4	Methodology \& Scenarios	Water Usage Constraints for HPPs Implemented?	Yes (Empiric methodologies implemented rather than complicated hydrology models due to unavailability of data)	Yes	Yes (Details unspecified)	Aggregated form.
MI5	Methodology \& Scenarios	Regimes of Pump-Storage HPPs Considered?	Yes	Yes	Yes	Aggregated form.
M16	Methodology \& Scenarios	Availability Parameters of Power Plants Considered?	Yes	Yes	Yes	No
MI7	Methodology \& Scenarios	Allocated Reserves in the Analysis	- For 2021: 1000 MW for Base Scenarios (at least for 95% of all hours) - For 2025: 800 MW for Base Scenarios (at least for 95\% of all hours)	1000 MW	Primary Reserve= 4\% of system load (all the time) + Secondary Reserve $=9 \%$ of system load (all the time)	Not specified.

${ }^{5}$ Per the regulatory change, RES power plants will be also included in the balancing responsibilities by the beginning of 2021.
USAID.GOV

\#	Category	Review Item	USAID ESP - Flexibility Assessment Study for Different RES Penetration Scenarios (This Study) 2020	Approved Generation Adequacy Study of Ukrenergo - 2019	Flexibility to FutureProof the Ukraine Power System 2018 (Wartsila)	Balancing of Fluctuating Renewable Power Sources - 2018 (Berlin Economics)
M18	Methodology \& Scenarios	Results of Ancillary Services Performance Tests Incorporated?	Yes, incorporated as additional constraint of power plants for which the AnS Performance Tests are completed.	Not applicable.	Not applicable.	Not applicable.
MI9	Methodology \& Scenarios	Mode of Operation (Isolated vs. Existing Interconnections)	Base Scenarios: Interconnected Also, isolated mode of operation has been assessed for all RES penetration scenarios for 2025.	Interconnected	Isolated	Interconnected
M20	Methodology \& Scenarios	Cross-Border Interconnections Considered as a Source of Flexibility?	Yes, within technical limits ${ }^{6}$.	Yes. Physical restrictions on the possibility of import-export of electricity by interstate interconnections considered.	No	No
M2I	Methodology \& Scenarios	RES Curtailment as a Source of Flexibility?	No (It is a result of downward ramping capability deficit)	Yes	Yes	Yes
M22	Methodology \& Scenarios	Load Shedding as a Source of Flexibility?	No	No	No	No
M23	Methodology \& Scenarios	NPPs Considered as a Source of Flexibility?	No	No	No	Yes

[^3]| \# | Category | Review Item | USAID ESP - Flexibility Assessment Study for Different RES Penetration Scenarios (This Study) 2020 | Approved Generation Adequacy Study of Ukrenergo - 2019 | Flexibility to FutureProof the Ukraine Power System 2018 (Wartsila) | Balancing of Fluctuating Renewable Power Sources - 2018 (Berlin Economics) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| M24 | Methodology \& Scenarios | Reduction of Must-Run Generation (Nuclear) in Base Scenarios | For 202I baseline scenario, 5\% nuclear reduction has been proposed.
 For 2025 baseline scenario, 10\% nuclear reduction has been proposed. | Yes (Dispatching limitations of NPP capacity were associated, in particular, with abnormally high air temperatures in the autumn-winter period, and the associated decline in electricity consumption.) | Yes, Nuclear
 Generation is reduced down to 70TWh in 2025 | Not specified |
| M25 | Methodology \& Scenarios | Part-Loading of Flexible Generation Units | Yes | Yes | No, considered to be inefficient | Yes |
| M26 | Methodology \& Scenarios | Decommissioning Status of Thermal Power Plants (2025) (Baseline or Target Scenario) | It has been assumed that no TPP unit will be shut down till 2025 (technically available capacities are assumed to remain same as it is today) | In the TSO scenario, I4GW of available capacity is assumed (very little reduction) | Slight Reduction till 2025 (Cost Optimized Scenario) | No, same capacity is kept. |
| M27 | Methodology \& Scenarios | Decommissioning Status of Nuclear Power Plants (2025) (Baseline or Target Scenario) | Same capacity is kept. | In the TSO scenario, same capacity is kept. | No, same capacity is kept. | No, same capacity is kept. |
| M28 | Methodology \& Scenarios | New Investments for Conventional Power Plants (till 2025) | As Ukrenergo provided, only 3 units added to existing conventional generation till 2025.
 - Dnistrovska PSHPP
 - Tashlytska PSHPP
 - Kakhovska HPP | PSHPP Investment have been incorporated TPP rehabilitation projects as well to keep the available in the same levels. | Not specified. | No new capacity investments on conventional power plants. |
| M29 | Methodology \& Scenarios | Baseline or Target Scenario Definition (2025) | Based on specified RES level and load growth ratios | Formation of the target scenario (TSO scenario) on the development of generation was carried out taking into account the results of conformity assessment (sufficiency) of generating capacities for the baseline scenario and the results of forming long-term supply and demand scenarios | Cost Optimized Scenario | Cost Optimized Scenario |

\#	Category	Review Item	USAID ESP - Flexibility Assessment Study for Different RES Penetration Scenarios (This Study) 2020	Approved Generation Adequacy Study of Ukrenergo - 2019	Flexibility to FutureProof the Ukraine Power System 2018 (Wartsila)	Balancing of Fluctuating Renewable Power Sources - 2018 (Berlin Economics)
M30	Methodology \& Scenarios	RES Generation Installed Capacity (2025) (Baseline or Target scenario)	202I Baseline Scenario: WPP: 2,585 MW, SPP: 6,24I MW 2025 Baseline Scenario: WPP: 3,000 MW, SPP: 9,500 MW	2021 TSO Scenario: WPP: 2,200 MW, SPP: 5,600 MW 2025 TSO Scenario: WPP: 3,200 MW, SPP: 6,350 MW	-Solar Installed Capacity Assumed to Remain Almost Unchanged between 2021-2025: 4900 MW (for 2025) (major solar build-out is assumed after 2030, - Wind Installed Capacity: 2600MW (for 2025)	I5,000 MW
M3I	Methodology \& Scenarios	Yearly Load Growth Assumption (\%)	Base Scenario: 1.2\% (CAGR till 2025) Other load growth scenarios have also been calculated (0% load growth, etc.)	Maximum demand scenario, yearly increase of $\sim 1 \%$.	$\sim 1.5 \%$ till 2025	Not specified.
M32	Methodology \& Scenarios	Additional Maneuvering Capacity Incorporated in Base Scenario (MW) (2025)	Not Applicable (It is not considered as given input for generation dispatch calculation; it is a result based on Expected Unserved Ramping Downward/Upward)	2000 MW of highly maneuverable thermal power plants. 2550 MW of Power Storage Capacity.	2-3 GW of flexible engine	0 MW
RI	Results	RES Penetration Level (MW) @which RES Curtailment is Expected to Start According to the Model Developed	4300 MW	Not specified.	Not specified.	10,000 MW
R2	Results	Recommended New Maneuvering Capacity (MW) and Capacity Factors for 2020	230MW (that would work with a 1.5% yearly capacity factor)	Not specified.	500 MW of internal combustion engines	Not specified.

\#	Category	Review Item	USAID ESP - Flexibility Assessment Study for Different RES Penetration Scenarios (This Study) 2020	Approved Generation Adequacy Study of Ukrenergo - 2019	Flexibility to FutureProof the Ukraine Power System 2018 (Wartsila)	Balancing of Fluctuating Renewable Power Sources - 2018 (Berlin Economics)
R3	Results	Recommended New Maneuvering Capacity (MW) and Capacity Factors for 2021 (Baseline or Target Scenario)	479 MW (CF: 0.24\%)	2000 MW of highly maneuverable thermal power plants. 2000 MW of Power Storage Capacity.	800 MW of internal combustion engines	0 MW
R4	Results	Recommended New Maneuvering Capacity (MW) and Capacity Factors for 2025 (Baseline or Target Scenario)	727 MW (CF: 0.41\%) for interconnected scenario. I,35I MW (CF: 0.82\%) for isolated mode of operation	2000 MW of highly maneuverable thermal power plants. 2550 MW of Power Storage Capacity.	2000 MW of internal combustion engines (low capacity factors)	0 MW
R5	Results	RES Curtailment Proposed (GWh, \% of RES generation) for 2019-2020 6 months	30GWh (35 hours)	Not specified. (As declared in Ukrenergo's weekly operational reports of past, curtailed RES energy was around 23GWh (totally 23 hours in different months) in last 12 months.)	Not specified.	Not specified.
R6	Results	RES Curtailment Proposed (GWh, \% of RES generation) for 2021 (Baseline or Target Scenario)	149GWh (104 hours) (1.02\% of RES generation)	RES restrictions are reduced to zero in TSOtarget scenario.	In 7.5GW RES case, the RES curtailment is reduced from 30% to around 5% by adding 2GW of flexible engine capacity.	Not specified.
R7	Results	RES Curtailment Proposed (GWh, \% of RES generation) for 2025 (Baseline or Target Scenario)	I97GWh (124 hours) (1.05\% of RES generation)	RES restrictions are reduced to zero in TSOtarget scenario.	In I3.5GW RES case, the RES curtailment is in the level of 20% even though 3-4 GW of flexible engine capacity is added.	For 10 GW RES installed capacity, 300GWh. For 15 GW RES installed capacity, I,500GWh.

2. INTRODUCTION

2.I. BACKGROUND

Similar to other countries, renewable energy sources (RES) are expected to play a major role in the generation capacity additions to Ukraine power system in the future. This brings in the need to carefully assess system requirements to match the challenges with increasing wind and solar generation.

Deployment of intermittent renewable energy power plants (i.e. wind and photovoltaic solar power plants) bring in challenges in terms of matching the variations in the load/generation patterns. Higher ramping and flexibility capabilities play key roles in sustaining secure operation of power networks.

Power system flexibility is the ability to adapt to dynamic and changing grid conditions by effective balancing supply and demand by the hour (or minute) or deploying new generation and transmission resources over a period of years ${ }^{7}$. Flexible resources include RES curtailment, conventional generators (TPPs, HPPs, PSHPPs, NGPPs), interconnections, demand response (DR) and battery storage, which can change their output sufficiently quickly in response to a changing residual load (net demand).

Inadequate system flexibility may require numerous planning decisions including understanding of risks to address potential deficits. Some potential risks:

- Difficulties meeting the RE policy targets
- Network security and reliability problems
- Increased stress on power system equipment

The inclusion of flexibility assessment for the long-term system planning studies help to understand the adequacy of generation mix in the power system.

2.2. OBJECTIVES OF THE STUDY

Ukrenergo has performed studies to evaluate the maximum variable RES generation that Ukraine power system could connect with the existing flexibility resources and has requested an independent consultant's assessment on the subject.

Objectives of this study can be summarized as follows:

- Bringing in a practical, black-box systematic approach for evaluation of flexibility for IPS of Ukraine
- Assessing residual load hourly (8760 hours) characteristics of Ukraine power system in different RES penetration and load growth scenarios

[^4]- Analysis of hourly (8760 hours) ramping adequacy of Ukraine power system in different RES penetration and load growth scenarios
- Provision of insights about the overall system characteristics in the process of decision making about maximum RES capacity to be allowed in Ukraine power system under availability of different flexibility options.

2.3. OVERVIEW OF THE TASKS

The project was completed through several iterations of "development of results \leftrightarrow incorporation of Ukrenergo's feedbacks" with the following high-level activities:

- Data/information gathering, online interactive sessions with Ukrenergo,
- Data verification and cleansing,
- Conducting flexibility adequacy assessment studies and consolidation of the preliminary results,
- Incorporation of results of Ancillary Services Performance tests regarding ramping/flexibility capability of TPPs, CHPPs, HPPs etc.;
- Modelling forced outage/availability parameters and maintenance plans for NPP, TPP, CHP, HPPs;
- investigation of precipitation and flow regimes and water usage constraints of Dnipro and Dniester rivers;
- assessment of future cross-border energy exchanges;
- basic economic assessment of different flexibility resources that will provide the maneuvering capacity for alternative RES penetration scenarios.
- Presentation of the preliminary results to all stakeholders,
- Finalization of results and preparation of final draft of the deliverable.

2.4. ABOUT THE CONTENT OF THE REPORT

Chapter 3, following next chapter of the Introduction part present the methodologies implemented in this study, including problem formulation, approach, scenarios, assumptions and formulas used for technical calculations.

Chapter 4 is composed of three components. In the first sub-chapter, a brief discussion on the validation of the flexibility adequacy assessment model developed for this study is presented. In the following sub-chapter, a comparative review of recent flexibility assessment studies for IPS of Ukraine is shown. In the last sub-chapter, detailed results for all the evaluated scenarios have been presented.

Chapter 5 has been dedicated to o basic economic assessment of different flexibility resources that will provide the maneuvering capacity for baseline RES penetration scenario in 2025.

Chapter 6 presents the conclusion and discussion about the outcomes of this study. Furthermore, specific subchapter has been presented for "Pro-Active RES Curtailment" as a source of flexibility to further discuss the economically most viable solution per economic calculations.

The appendix part of the report presents the illustrations for the results of the analysis which include

- Detailed Results of Load and Residual Load Duration Curves
- Detailed Results of Probabilistic Distribution of (I-RL\%) in \% of Load
- Detailed Results of Probabilistic Distribution of RES Ramp Ratio in \% of Load
- Detailed Results of Chromatic Illustration of RL in \% of Load
- Daily Profiles - As-Is and Selected Scenarios for 2021 and 2025

3. METHODOLOGY AND TECHNICAL STUDIES

3.I. PROBLEM STATEMENT AND APPROACH

Challenges to be addressed in this study have been identified as follows:
$\sqrt{ }$ Excessive hourly deviations that cannot be balanced sufficiently quickly
$\sqrt{ }$ Excess power in cases of low consumption and high RES
$\sqrt{ }$ Lack of power in cases of high consumption and low RES

The assessment try to answer following question: Does the current generation mix (power plant fleet) allow for the integration of a higher share of fluctuating renewable power sources in Ukraine and which balancing options are appropriate?

Different approaches are mentioned in the literature for flexibility adequacy studies ${ }^{8}$.
$\sqrt{ }$ Tier I: Tools with light data requirements, e. g., no time series. These can be based on data about the generation portfolio, interconnections and other potential sources of flexibility and usually require expert judgement.
$\sqrt{ }$ Tier 2: Tools that calculate sufficiency of flexibility based on time series and more detailed generation data or based on a non-optimal dispatch, typically with calculations performed on a spreadsheet without full optimization.
$\sqrt{ }$ Tier 3: Tools based on optimal dispatch and unit commitment models, combined with generation planning models. Generally, complex solvers are used, and comprehensive economic modelling is required.

Since Tier-3 studies -which require a well-developed economic database/model of the power system- are planned to be performed as part of "Network Development Plan" project that ESP will develop together with Ukrenergo, a more simplistic approach has been selected (Tier-2) for this specific assignment.

In this context, "Flexibility Assessment" in time series (8760 hours) have been decided to be executed in the scope of the project.

[^5]
3.2. FLEXIBILITY ASSESSMENT METHODOLOGY

Integrating increasing wind and solar generation in Ukraine power system can lead to a strong increase of flexibility requirements for other generation elements which are expected to balance the fluctuations of variable generation. As increasing level of RES penetration puts pressure on the system flexibility challenges, variation driven by RES power plants should be assessed, at least using a time resolution of an hour.

In this context, the methodology used in this study assignment has been developed based on two main pillars:

- Residual Load Analyses (per ENTSO-E parameters): The main objective is to identify potential lack of flexible generation in future power system operations of Ukraine. It mainly considers the hourly time-series calculation of residual load and RES ramps and check the system behavior for all hours against the ENTSO-E recommended threshold values.
- Assessment of Ramping Needs and Sources for Ukraine (Calculating selected EPRI Flexibility Metrics): As the hourly changes must be met by the dispatchable generations; hourly comparison of flexibility requirements and flexibility resources (hydro, pump-storage, thermal) have been applied for both directions; namely downward and upward ramps. Metrics including EUR (Expected Unserved Ramping) and PFD (Period of Flexibility Deficit) have been calculated and heuristic limits considering the power system, available reserve capacities and interconnections have been applied.

The study does not include any economic optimization and purely focuses on technical assessment; with basic assumptions to estimate hourly dispatch of future generation. Calculations performed on a spreadsheet model without power system optimization. Developed spreadsheet model calculates generation dispatch rules based that maximize flexibility. Residual Load (System Load - RES - Must-run Generation) has been calculated and required upward and downward ramping capabilities and resources for each hour have been evaluated.

Time series (e.g., demand and variable generation, which should be synchronous with each other) are attained from historical data (last 24 months, as May $10^{\text {th }}, 2020$ is the last day of the time series) and are converted for possible future situations. The tool developed has mainly been used for screening potential issues (e. g., curtailments and high ramp requirements) as the share of variable generation increases.

In this context, flexibility resources are limited by the constraints of hydro, thermal and pump storage power plants, for each hour;

- Generation level (MW)
- Ramp rate (MW/hour)
- Maximum available capacity of the (MW) power plant
- Minimum generation (technical minimum) level (MW)
- Water usage constraints for HPPs and operational regime limitations of PSHPPs
- Allocated system reserves per grid code
- Retained \% of must-run generation (as the RES penetration level increases certain reductions in the generation of must-run-units (e.g. nuclear power plants) have been applied to reach a technically feasible solution

Four criteria have been applied to assess system flexibility adequacy for all scenarios:

- Criteria I.I: Residual load to be non-negative for all hours of the year
- Criteria I.2: RES ramps not to exceed $\pm 10 \%$ of the load for all hours of the year
- Criteria 2.1: Downward ramping deficit should be lower than I\% of the load for 99% of the hours
- Criteria 2.2: Downward ramping deficit should be lower than 1% of the load for 99% of the hours

The set of parameters and the calculation methods used:

- "Must Run" generation is considered as the sum of nuclear generation and generation from CHPPs for all hours.

```
- Formula: Must Run ( t\()=\mathrm{NPP}(\mathrm{t})+\mathrm{CHP}(\mathrm{t}) ;(0<\mathrm{t}<8,760 \mathrm{~h})\)
```

- "RES Generation" includes wind and solar generation, as well as run-of-river hydro power plants.
- Formula: RES $(\mathrm{t})=\mathrm{WPP}(\mathrm{t})+\operatorname{SPP}(\mathrm{t})+$ Run of River HPP $(\mathrm{t}) ;(0<\mathrm{t}<8,760 \mathrm{~h})$
- "Residual Load" is the load that should be supplied by dispatchable generation. Absolute value of RL, RL ratio in comparison with load, the hourly change (ramp) need of RL and rate of RL ramp are calculated.
- Formula: Residual Load Absolute Value (t$)=$ Load $(\mathrm{t})-$ WPP (t) - SPP (t) - Run of River HPP (t) - Must Run (t); ($0<\mathrm{t}<8,760 \mathrm{~h}$)
- Formula: Residual Load Ratio (\%) (t) = Residual Load Absolute Value (t) / Load (t); ($0<t<8,760 \mathrm{~h}$)
- Formula: Residual Load Ramp $=\Delta R L(t)=(R L(t)-R L(t-I)) ;(0<t<8,760 h)$
- Formula: Residual Load Ramp Rate (\%) $=\% \Delta \mathrm{RL}=\Delta \mathrm{RL}(\mathrm{t}) / \mathrm{RL}(\mathrm{t}-\mathrm{I}) ;(0<\mathrm{t}<8,760 \mathrm{~h})$
- "RES Ramp" is the hourly change of generation from RES; and calculated both in absolute figures (MW) and as percentage in comparison with the load.
- Formula: RES Generation Ramp $(\mathrm{t})=\Delta \operatorname{RES}(\mathrm{t})=(\operatorname{RES}(\mathrm{t})-\operatorname{RES}(\mathrm{t}-\mathrm{I})) ;(0<\mathrm{t}<8,760 \mathrm{~h})$
- Formula: RES Generation Ramp Rate in Percentage of Load (\%) $=\% \Delta$ RES (t$)=\Delta$ RES/ Load (t); ($0<\mathrm{t}<8,760 \mathrm{~h}$)
- "RLPI - RES Load Penetration Index" is defined as maximum hourly coverage of load by RES
- Formula: RLPI $=\max (\mathrm{WPP}(\mathrm{t})+\operatorname{SPP}(\mathrm{t})) / \mathrm{L}(\mathrm{t}))$
- "REPI - RES Energy Penetration Index" is defined as the share of RES generation in the annual total demand
- Formula: REPI $=($ WPP (annual $)+$ SPP (annual) $) / E($ annual $)$
- "Violation of RL Constraint in MWh)" is the total net load (residual load) for the negative hours
- Formula: RLV= (number of hours with $\mathrm{RL}<0$) / 8,760h
- Formula: RLV in MWh= abs (sum of hourly RL values if $R L<0$)
- Formula: RLV in \% of annual RES generation= (RLV in MWh) / (Annual RES generation)
- "Flexibility Requirement" of the system is defined as the hourly change in residual load (RL), separately calculated for both directions (upward and downward)
- Formula: Flexibility Requirement $(\mathrm{t}) \mathrm{Up}=$ Residual Load Hourly Change $=\Delta \mathrm{RL}$ (MW)
- Formula: Flexibility Requirement (t) Down =Abs (Residual Load Hourly Change= $\Delta \mathrm{RL}(\mathrm{MW})$)
- "Upward Flexibility Source" is defined as the sum of the hourly upward ramp that can be provided by hydro, pump-storage and thermal power plants.

```
O Formula: Flexibility Source (t) Up = TPP_flexibility_up(t) + HPP_flexibility_up (t) +
    PSHPP_flexibility_generation_up (t) + PSHPP_flexibility_pumping_up (t)
```

- For TPP (unit based)>>> if unit generation (t$) \neq 0$,
TPP_flexibility_up(t$)=$ max_available_capacity - unit generation (t)
- For HPP (PP based)>>> HPP_flexibility_up(t)=max_daily_HPP_generation (t) - HPP generation (t)
- For PSHPP >>>

PSHPP_flexibility_generation_up (t) = if PSHPP generation $(\mathrm{t})=0 \ggg 0$
if PSHPP generation $(\mathrm{t}) \neq 0 \ggg$ max_daily_PSHPP_generation - PSHPP generation (t) (Flexibility figures are limited with generation mode durability of Kiev and Dnistrovska PSHPP)

PSHPP_flexibility_pumping_up (t$)=$
if PSHPP pumping $(\mathrm{t})=0 \ggg 0$ if PSHPP pumping $(\mathrm{t}) \neq 0 \ggg$ abs (PSHPP consumption (t))

- "Downward Flexibility Source" is defined as the sum of the downward ramp that can be provided by hydro, pump-storage and thermal power plants.
- Formula: Flexibility Source (t) down = TPP_flexibility_down(t) + HPP_flexibility_down $(\mathrm{t})+$ PSHPP_flexibility_generation_down (t) + PSHPP_flexibility_pumping_down (t)
- For TPP (unit based)>>> if unit generation (t$) \neq 0$, TPP_flexibility_down(t)=unit generation (t) - technical_minimum_of unit
- For HPP (PP based)>>>
if non-flood times>>> HPP_flexibility_down(t)=HPP_generation (t$)$ - HPP
Minimum(t)
if flood times (March, April, May, mid-June)>>>
HPP_flexibility_down(t$)=$ HPP_generation (t) - minimum_daily_HPP_generation
- For PSHPP >>>

PSHPP_flexibility_generation_down $(\mathrm{t})=$
if PSHPP generation $(\mathrm{t})=0 \ggg 0$
if PSHPP generation $(\mathrm{t}) \neq 0 \ggg$ PSHPP generation (t))
PSHPP_flexibility_pumping_down $(\mathrm{t})=$
if PSHPP consumption $(\mathrm{t})=0 \ggg 0$
if PSHPP consumption $(\mathrm{t}) \neq 0 \ggg$ max_daily_PSHPP_consumptionabs(PSHPP consumption (t))
(Flexibility figures are limited with generation mode durability of Kiev and Dnistrovska PSHPP)

- PFD - Period of Flexibility Deficit: Number of periods when the system has insufficient ramping capability to manage the expected ramping of the system's net load
- EUR - Expected Unserved Ramping: Total shortage of flexibility when the system has insufficient ramping capability to manage the expected ramping of the system's residual load measured in MW= $\Delta R L(t)$ Flexibility Resources (t) (Note that both PFD and EUR are calculated separately for upward and downward directions.)

3.3. SCENARIOS

For the flexibility assessment, scenarios have been developed for;

- Years of 2021 and 2025
- Different levels of WPP \& SPP penetration (installed capacity)
- For 202I Scenarios: WPP: I,500MW - 2,600MW, SPP: 5,000MW 8,000MW
- For 2025 Scenarios: WPP: 2,500MW

Year for fnalysis	\# of RES Renetration scenarios	\# of Load Growh Gcenarios	\# of Operational Mode Scenarios	Total Number of Scenarios
2021	10	3	2	60
2025	10	2	2	40

- Annual load growth rates: No growth, 0.5% and 1.2% annual increase of demand
- Mode of operation of the power system
- Existence of as-is interconnections
- Isolated mode of operation

For the evaluation against all aforementioned criteria, following scenarios have been developed and used:

							RES Installed Capacity	
			Growth	(MWh)	(MWh)		WPP Inst. Cap. (MW)	SPP Inst. Cap. (MW)
R2I.0,0.SQ.1a	202I Mainland with WPP Installed Capacity: 2585 MW and SPP Installed Capacity: 624 I MW (RES Connection Forecast of Ukrenergo for end of 202I)	2021	0.0\%	10.0\%	0.0\%	Existing Interconn.	2,585	6,24I
R2I.0,0.SQ.Ib	202I Mainland with WPP Installed Capacity: 2585 MW and SPP Installed Capacity: 624I MW (RES Connection Forecast of Ukrenergo for end of 202I)	2021	0.0\%	15.0\%	0.0\%	Existing Interconn.	2,585	6,24I
R2I.0,0.SQ.2a	2021 Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2021	0.0\%	10.0\%	0.0\%	Existing Interconn.	2,000	7,000
R2I.0,0.SQ.2b	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2021	0.0\%	15.0\%	0.0\%	Existing Interconn.	2,000	7,000
R21.0,0.SQ. 3	2021 Mainland with WPP Installed Capacity: I500 MW and SPP Installed Capacity: 5000 MW	2021	0.0\%	10.0\%	0.0\%	Existing Interconn.	1,500	5,000
R2I.0,0.SQ. 4	202I Mainland with WPP Installed Capacity: I500 MW and SPP Installed Capacity: 6000 MW	2021	0.0\%	10.0\%	0.0\%	Existing Interconn.	I,500	6,000
R21.0,0.SQ. 5	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 6000 MW	2021	0.0\%	10.0\%	0.0\%	Existing Interconn.	2,000	6,000
R2I.0,0.SQ. 6	202I Mainland with WPP Installed Capacity: I500 MW and SPP Installed Capacity: 7000 MW	2021	0.0\%	10.0\%	0.0\%	Existing Interconn.	1,500	7,000
R2I.0,0.SQ. 7	202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 6000 MW	2021	0.0\%	10.0\%	0.0\%	Existing Interconn.	2,500	6,000
R2I.0,0.SQ. 8	202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 7000 MW	2021	0.0\%	10.0\%	0.0\%	Existing Interconn.	2,500	7,000
R21.0,0.SQ. 9	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7500 MW	2021	0.0\%	10.0\%	0.0\%	Existing Interconn.	2,000	7,500
R2I.0,0.SQ. 10	202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 7500 MW	2021	0.0\%	15.0\%	0.0\%	Existing Interconn.	2,500	7,500
R21.0,0.SQ. I I	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 8000 MW	2021	0.0\%	15.0\%	0.0\%	Existing Interconn.	2,000	8,000
R2I.0,5.SQ.Ia	202I Mainland with WPP Installed Capacity: 2585 MW and SPP Installed Capacity: 624I MW (RES Connection Forecast of Ukrenergo for end of 202I)	2021	0.5\%	7.5\%	0.0\%	Existing Interconn.	2,585	6,24I

31 | FLEXIBILITY ASSESSMENT FOR RES PENETRATION SCENARIOS

	Scenario Name	Year of Calculation	Yearly Load Growth		Reduction of Yearly CHPP Generation (MWh)	Mode of Operation	RES Installed Capacity	
				(MWh)			WPP Inst. Cap. (MW)	SPP Inst. Cap. (MW)
R21.0,5.SQ.Ib	202I Mainland with WPP Installed Capacity: 2585 MW and SPP Installed Capacity: 624 I MW (RES Connection Forecast of Ukrenergo for end of 2021)	2021	0.5\%	12.5\%	0.0\%	Existing Interconn.	2,585	6,24I
R2I.0,5.SQ.2a	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2021	0.5\%	7.5\%	0.0\%	Existing Interconn.	2,000	7,000
R21.0,5.SQ.2b	202 I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2021	0.5\%	12.5\%	0.0\%	Existing Interconn.	2,000	7,000
R2I.0,5.SQ. 3	202I Mainland with WPP Installed Capacity: I500 MW and SPP Installed Capacity: 5000 MW	2021	0.5\%	7.5\%	0.0\%	Existing Interconn.	1,500	5,000
R21.0,5.SQ. 4	2021 Mainland with WPP Installed Capacity: 1500 MW and SPP Installed Capacity: 6000 MW	2021	0.5\%	7.5\%	0.0\%	Existing Interconn.	1,500	6,000
R2I.0,5.SQ. 5	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 6000 MW	2021	0.5\%	7.5\%	0.0\%	Existing Interconn.	2,000	6,000
R21.0,5.SQ. 6	202I Mainland with WPP Installed Capacity: 1500 MW and SPP Installed Capacity: 7000 MW	2021	0.5\%	7.5\%	0.0\%	Existing Interconn.	1,500	7,000
R2I.0,5.SQ. 7	202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 6000 MW	2021	0.5\%	7.5\%	0.0\%	Existing Interconn.	2,500	6,000
R2I.0,5.SQ. 8	202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 7000 MW	2021	0.5\%	7.5\%	0.0\%	Existing Interconn.	2,500	7,000
R2I.0,5.SQ. 9	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7500 MW	2021	0.5\%	7.5\%	0.0\%	Existing Interconn.	2,000	7,500
R21.0,5.SQ. 10	202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 7500 MW	2021	0.5\%	12.5\%	0.0\%	Existing Interconn.	2,500	7,500
R2I.0,5.SQ.II	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 8000 MW	2021	0.5\%	12.5\%	0.0\%	Existing Interconn.	2,000	8,000
R2I.0,5.SQ.la	202 I Mainland with WPP Installed Capacity: 2585 MW and SPP Installed Capacity: 624I MW (RES Connection Forecast of Ukrenergo for end of 2021)	2021	0.5\%	7.5\%	0.0\%	Existing Interconn.	2,585	6,24I
R2I.I,0.SQ.la	202I Mainland with WPP Installed Capacity: 2585 MW and SPP Installed Capacity: 624I MW (RES Connection Forecast of Ukrenergo for end of 202I)	2021	1.0\%	5.0\%	0.0\%	Existing Interconn.	2,585	6,24I

Sc. No	Scenario Name	Year of Calculation	Yearly Load Growth	Reduction of Yearly Nuclear Generation (MWh)	Reduction of Yearly CHPP Generation (MWh)	Mode of Operation	RES Installed Capacity	
							WPP Inst. Cap. (MW)	SPP Inst. Cap. (MW)
R2I.I,0.SQ.Ib	202I Mainland with WPP Installed Capacity: 2585 MW and SPP Installed Capacity: 624I MW (RES Connection Forecast of Ukrenergo for end of 2021)	2021	1.0\%	10.0\%	0.0\%	Existing Interconn.	2,585	6,24I
R2I.I,0.SQ.2a	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2021	1.0\%	5.0\%	0.0\%	Existing Interconn.	2,000	7,000
R2I.I,0.SQ.2b	2021 Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2021	1.0\%	10.0\%	0.0\%	Existing Interconn.	2,000	7,000
R2I.I,0.SQ. 3	202I Mainland with WPP Installed Capacity: I500 MW and SPP Installed Capacity: 5000 MW	2021	1.0\%	5.0\%	0.0\%	Existing Interconn.	1,500	5,000
R2I.I,0.SQ. 4	202I Mainland with WPP Installed Capacity: 1500 MW and SPP Installed Capacity: 6000 MW	2021	1.0\%	5.0\%	0.0\%	Existing Interconn.	1,500	6,000
R2I.I,0.SQ. 5	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 6000 MW	2021	1.0\%	5.0\%	0.0\%	Existing Interconn.	2,000	6,000
R2I.I,0.SQ. 6	202I Mainland with WPP Installed Capacity: 1500 MW and SPP Installed Capacity: 7000 MW	2021	1.0\%	5.0\%	0.0\%	Existing Interconn.	1,500	7,000
R2I.I,0.SQ. 7	202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 6000 MW	2021	1.0\%	5.0\%	0.0\%	Existing Interconn.	2,500	6,000
R2I.I,0.SQ. 8	202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 7000 MW	2021	1.0\%	5.0\%	0.0\%	Existing Interconn.	2,500	7,000
R2I.I,0.SQ. 9	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7500 MW	2021	1.0\%	5.0\%	0.0\%	Existing Interconn.	2,000	7,500
R2I.I,0.SQ. 10	202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 7500 MW	2021	1.0\%	10.0\%	0.0\%	Existing Interconn.	2,500	7,500
R2I.I,0.SQ.II	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 8000 MW	2021	1.0\%	10.0\%	0.0\%	Existing Interconn.	2,000	8,000
R2I.0,0.ISO.Ia	202 I Mainland with WPP Installed Capacity: 2585 MW and SPP Installed Capacity: 624I MW (RES Connection Forecast of Ukrenergo for end of 2021)	2021	0.0\%	10.0\%	0.0\%	Isolated	2,585	6,24I
R2I.0,0.ISO.Ib	202I Mainland with WPP Installed Capacity: 2585 MW and SPP Installed Capacity: 624I MW (RES Connection Forecast of Ukrenergo for end of 202I)	2021	0.0\%	15.0\%	0.0\%	Isolated	2,585	6,24I

							RES Installed Capacity	
			Growth	(MWh)	(MWh)		WPP Inst. Cap. (MW)	SPP Inst. Cap. (MW)
R2I.0,0.ISO.2a	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2021	0.0\%	10.0\%	0.0\%	Isolated	2,000	7,000
R2I.0,0.ISO.2b	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2021	0.0\%	15.0\%	0.0\%	Isolated	2,000	7,000
R21.0,0.ISO. 3	2021 Mainland with WPP Installed Capacity: I500 MW and SPP Installed Capacity: 5000 MW	2021	0.0\%	10.0\%	0.0\%	Isolated	1,500	5,000
R2I.0,0.ISO. 4	202I Mainland with WPP Installed Capacity: I500 MW and SPP Installed Capacity: 6000 MW	2021	0.0\%	10.0\%	0.0\%	Isolated	I,500	6,000
R21.0,0.ISO. 5	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 6000 MW	2021	0.0\%	10.0\%	0.0\%	Isolated	2,000	6,000
R2I.0,0.ISO. 6	202I Mainland with WPP Installed Capacity: 1500 MW and SPP Installed Capacity: 7000 MW	2021	0.0\%	10.0\%	0.0\%	Isolated	I,500	7,000
R2I.0,0.ISO. 7	202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 6000 MW	2021	0.0\%	10.0\%	0.0\%	Isolated	2,500	6,000
R2I.0,0.ISO. 8	202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 7000 MW	2021	0.0\%	10.0\%	0.0\%	Isolated	2,500	7,000
R2I.0,0.ISO. 9	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7500 MW	2021	0.0\%	10.0\%	0.0\%	Isolated	2,000	7,500
R21.0,0.ISO. 10	202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 7500 MW	2021	0.0\%	15.0\%	0.0\%	Isolated	2,500	7,500
R2I.0,0.ISO. 11	202 I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 8000 MW	2021	0.0\%	15.0\%	0.0\%	Isolated	2,000	8,000
R2I.0,5.ISO.Ia	202I Mainland with WPP Installed Capacity: 2585 MW and SPP Installed Capacity: 624I MW (RES Connection Forecast of Ukrenergo for end of 202I)	2021	0.5\%	7.5\%	0.0\%	Isolated	2,585	6,24I
R21.0,5.ISO.Ib	2021 Mainland with WPP Installed Capacity: 2585 MW and SPP Installed Capacity: 6241 MW (RES Connection Forecast of Ukrenergo for end of 2021)	2021	0.5\%	12.5\%	0.0\%	Isolated	2,585	6,24I
R2I.0,5.ISO.2a	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2021	0.5\%	7.5\%	0.0\%	Isolated	2,000	7,000

							RES Installed Capacity	
			Growth	(MWh)	(MWh)		WPP Inst. Cap. (MW)	SPP Inst. Cap. (MW)
R2I.0,5.ISO.2b	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2021	0.5\%	12.5\%	0.0\%	Isolated	2,000	7,000
R2I.0,5.ISO. 3	202I Mainland with WPP Installed Capacity: I500 MW and SPP Installed Capacity: 5000 MW	2021	0.5\%	7.5\%	0.0\%	Isolated	I,500	5,000
R2I.0,5.ISO. 4	202I Mainland with WPP Installed Capacity: I500 MW and SPP Installed Capacity: 6000 MW	2021	0.5\%	7.5\%	0.0\%	Isolated	1,500	6,000
R2I.0,5.ISO. 5	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 6000 MW	2021	0.5\%	7.5\%	0.0\%	Isolated	2,000	6,000
R2I.0,5.ISO. 6	2021 Mainland with WPP Installed Capacity: 1500 MW and SPP Installed Capacity: 7000 MW	2021	0.5\%	7.5\%	0.0\%	Isolated	1,500	7,000
R2I.0,5.ISO. 7	202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 6000 MW	2021	0.5\%	7.5\%	0.0\%	Isolated	2,500	6,000
R2I.0,5.ISO. 8	202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 7000 MW	2021	0.5\%	7.5\%	0.0\%	Isolated	2,500	7,000
R2I.0,5.ISO. 9	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7500 MW	2021	0.5\%	7.5\%	0.0\%	Isolated	2,000	7,500
R2I.0,5.ISO. 10	202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 7500 MW	2021	0.5\%	12.5\%	0.0\%	Isolated	2,500	7,500
R2I.0,5.ISO.II	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 8000 MW	2021	0.5\%	12.5\%	0.0\%	Isolated	2,000	8,000
R2I.I,0.ISO.1a	202 I Mainland with WPP Installed Capacity: 2585 MW and SPP Installed Capacity: 624I MW (RES Connection Forecast of Ukrenergo for end of 2021)	2021	1.0\%	5.0\%	0.0\%	Isolated	2,585	6,24I
R2I.I,0.ISO.Ib	202I Mainland with WPP Installed Capacity: 2585 MW and SPP Installed Capacity: 624I MW (RES Connection Forecast of Ukrenergo for end of 2021)	2021	1.0\%	10.0\%	0.0\%	Isolated	2,585	6,24I
R2I.I,0.ISO.2a	202 I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2021	1.0\%	5.0\%	0.0\%	Isolated	2,000	7,000
R2I.I,0.ISO.2b	202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2021	1.0\%	10.0\%	0.0\%	Isolated	2,000	7,000
R2I.I,0.ISO. 3	202I Mainland with WPP Installed Capacity: 1500 MW and SPP Installed Capacity: 5000 MW	2021	1.0\%	5.0\%	0.0\%	Isolated	1,500	5,000

[^6]| | Scenario Name | Year of Calculation | Yearly
 Load
 Growth | Reduction of | Reduction of Yearly CHPP Generation (MWh) | Mode of Operation | RES Installed Capacity | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | | | (MWh) | | | WPP Inst. Cap. (MW) | SPP Inst. Cap. (MW) |
| R2I.I,0.ISO. 4 | 202I Mainland with WPP Installed Capacity: I500 MW and SPP Installed Capacity: 6000 MW | 2021 | 1.0\% | 5.0\% | 0.0\% | Isolated | 1,500 | 6,000 |
| R2I.I,0.ISO. 5 | 202 I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 6000 MW | 2021 | 1.0\% | 5.0\% | 0.0\% | Isolated | 2,000 | 6,000 |
| R2I.I,0.ISO. 6 | 202I Mainland with WPP Installed Capacity: I500 MW and SPP Installed Capacity: 7000 MW | 2021 | 1.0\% | 5.0\% | 0.0\% | Isolated | 1,500 | 7,000 |
| R2I.I,0.ISO. 7 | 202 I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 6000 MW | 2021 | 1.0\% | 5.0\% | 0.0\% | Isolated | 2,500 | 6,000 |
| R2I.I,0.ISO. 8 | 202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 7000 MW | 2021 | 1.0\% | 5.0\% | 0.0\% | Isolated | 2,500 | 7,000 |
| R2I.I,0.ISO. 9 | 202I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 7500 MW | 2021 | 1.0\% | 5.0\% | 0.0\% | Isolated | 2,000 | 7,500 |
| R2I.I,0.ISO. 10 | 202I Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 7500 MW | 2021 | 1.0\% | 10.0\% | 0.0\% | Isolated | 2,500 | 7,500 |
| R2I.I,0.ISO.II | 202 I Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 8000 MW | 2021 | 1.0\% | 10.0\% | 0.0\% | Isolated | 2,000 | 8,000 |
| R25.0,5.SQ.I | 2025 Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 7500 MW (Min RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)* | 2025 | 0.5\% | 10.0\% | 0.0\% | Existing Interconn. | 2,500 | 7,500 |
| R25.0,5.SQ. 2 | 2025 Mainland with WPP Installed Capacity: 3000 MW and SPP Installed Capacity: 9500 MW (Medium RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)* | 2025 | 0.5\% | 10.0\% | 10.0\% | Existing Interconn. | 3,000 | 9,500 |
| R25.0,5.SQ. 3 | 2025 Mainland with WPP Installed Capacity: 7500 MW and SPP Installed Capacity: 12,000 MW (High RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)* | 2025 | 0.5\% | 40.0\% | 20.0\% | Existing Interconn. | 7,500 | 12,000 |
| R25.0,5.SQ. 4 | 2025 Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 8000 MW | 2025 | 0.5\% | 10.0\% | 0.0\% | Existing Interconn. | 2,000 | 8,000 |
| R25.0,5.SQ. 5 | 2025 Mainland with WPP Installed Capacity: 3500 MW and SPP Installed Capacity: 9000 MW | 2025 | 0.5\% | 10.0\% | 0.0\% | Existing Interconn. | 3,500 | 9,000 |
| R25.0,5.SQ. 6 | 2025 Mainland with WPP Installed Capacity: 4000 MW and SPP Installed Capacity: 10000 MW | 2025 | 0.5\% | 15.0\% | 10.0\% | Existing Interconn. | 4,000 | 10,000 |

	Scenario Name	Year of Calculation	Yearly Load Growth	Reduction of Yearly Nuclear Generation (MWh)	Reduction of Yearly CHPP Generation (MWh)	Mode of Operation	RES Installed Capacity	
							WPP Inst. Cap. (MW)	SPP Inst. Cap. (MW)
R25.0,5.SQ. 7	2025 Mainland with WPP Installed Capacity: 5000 MW and SPP Installed Capacity: 10000 MW	2025	0.5\%	20.0\%	20.0\%	Existing Interconn.	5,000	10,000
R25.0,5.SQ. 8	2025 Mainland with WPP Installed Capacity: 4000 MW and SPP Installed Capacity: I 2000 MW	2025	0.5\%	20.0\%	20.0\%	Existing Interconn.	4,000	12,000
R25.0,5.SQ. 9	2025 Mainland with WPP Installed Capacity: 4500 MW and SPP Installed Capacity: 12500 MW	2025	0.5\%	30.0\%	20.0\%	Existing Interconn.	4,500	12,500
R25.0,5.SQ. 10	2025 Mainland with WPP Installed Capacity: 5000 MW and SPP Installed Capacity: I 3000 MW	2025	0.5\%	35.0\%	20.0\%	Existing Interconn.	5,000	13,000
R25.1,2.SQ.I	2025 Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 7500 MW (Min RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2025	1.2\%	10.0\%	0.0\%	Existing Interconn.	2,500	7,500
R25.1,2.SQ. 2	2025 Mainland with WPP Installed Capacity: 3000 MW and SPP Installed Capacity: 9500 MW (Medium RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2025	1.2\%	10.0\%	10.0\%	Existing Interconn.	3,000	9,500
R25.1,2.SQ. 3	2025 Mainland with WPP Installed Capacity: 7500 MW and SPP Installed Capacity: 12,000 MW (High RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2025	1.2\%	50.0\%	20.0\%	Existing Interconn.	7,500	12,000
R25.1,2.SQ. 4	2025 Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 8000 MW	2025	1.2\%	10.0\%	0.0\%	Existing Interconn.	2,000	8,000
R25.1,2.SQ. 5	2025 Mainland with WPP Installed Capacity: 3500 MW and SPP Installed Capacity: 9000 MW	2025	1.2\%	10.0\%	0.0\%	Existing Interconn.	3,500	9,000
R25.1,2.SQ. 6	2025 Mainland with WPP Installed Capacity: 4000 MW and SPP Installed Capacity: 10000 MW	2025	1.2\%	20.0\%	10.0\%	Existing Interconn.	4,000	10,000
R25.1,2.SQ. 7	2025 Mainland with WPP Installed Capacity: 5000 MW and SPP Installed Capacity: 10000 MW	2025	1.2\%	25.0\%	10.0\%	Existing Interconn.	5,000	10,000
R25.1,2.SQ. 8	2025 Mainland with WPP Installed Capacity: 4000 MW and SPP Installed Capacity: I 2000 MW	2025	1.2\%	30.0\%	10.0\%	Existing Interconn.	4,000	12,000
R25.1,2.SQ. 9	2026 Mainland with WPP Installed Capacity: 4500 MW and SPP Installed Capacity: 12500 MW	2025	1.2\%	30.0\%	20.0\%	Existing Interconn.	4,500	12,500
R25.1,2.SQ. 10	2025 Mainland with WPP Installed Capacity: 5000 MW and SPP Installed Capacity: I 3000 MW	2025	1.2\%	40.0\%	20.0\%	Existing Interconn.	5,000	13,000

Sc. No	Scenario Name	Year of Calculation	Yearly Load Growth	Reduction of Yearly Nuclear Generation (MWh)	Reduction of Yearly CHPP Generation (MWh)	Mode of Operation	RES Installed Capacity	
							WPP Inst. Cap. (MW)	SPP Inst. Cap. (MW)
R25.0,5.ISO.I	2025 Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 7500 MW (Min RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2025	0.5\%	10.0\%	0.0\%	Isolated	2,500	7,500
R25.0,5.ISO. 2	2025 Mainland with WPP Installed Capacity: 3000 MW and SPP Installed Capacity: 9500 MW (Medium RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2025	0.5\%	10.0\%	10.0\%	Isolated	3,000	9,500
R25.0,5.ISO. 3	2025 Mainland with WPP Installed Capacity: 7500 MW and SPP Installed Capacity: 12,000 MW (High RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2025	0.5\%	40.0\%	20.0\%	Isolated	7,500	12,000
R25.0,5.ISO. 4	2025 Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 8000 MW	2025	0.5\%	10.0\%	0.0\%	Isolated	2,000	8,000
R25.0,5.ISO. 5	2025 Mainland with WPP Installed Capacity: 3500 MW and SPP Installed Capacity: 9000 MW	2025	0.5\%	10.0\%	0.0\%	Isolated	3,500	9,000
R25.0,5.ISO. 6	2025 Mainland with WPP Installed Capacity: 4000 MW and SPP Installed Capacity: 10000 MW	2025	0.5\%	15.0\%	10.0\%	Isolated	4,000	10,000
R25.0,5.ISO. 7	2025 Mainland with WPP Installed Capacity: 5000 MW and SPP Installed Capacity: 10000 MW	2025	0.5\%	20.0\%	20.0\%	Isolated	5,000	10,000
R25.0,5.ISO. 8	2025 Mainland with WPP Installed Capacity: 4000 MW and SPP Installed Capacity: I 2000 MW	2025	0.5\%	25.0\%	20.0\%	Isolated	4,000	12,000
R25.0,5.ISO. 9	2025 Mainland with WPP Installed Capacity: 4500 MW and SPP Installed Capacity: 12500 MW	2025	0.5\%	30.0\%	20.0\%	Isolated	4,500	12,500
R25.0,5.ISO. 10	2025 Mainland with WPP Installed Capacity: 5000 MW and SPP Installed Capacity: I 3000 MW	2025	0.5\%	30.0\%	20.0\%	Isolated	5,000	13,000
R25.1,2.ISO.I	2025 Mainland with WPP Installed Capacity: 2500 MW and SPP Installed Capacity: 7500 MW (Min RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2025	1.2\%	10.0\%	0.0\%	Isolated	2,500	7,500
R25.I,2.ISO. 2	2025 Mainland with WPP Installed Capacity: 3000 MW and SPP Installed Capacity: 9500 MW (Medium RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2025	1.2\%	10.0\%	10.0\%	Isolated	3,000	9,500

					Reduction of Yearly CHPP Generation (MWh)	Mode of Operation	RES Installed Capacity	
			Growth	(MWh)			WPP Inst. Cap. (MW)	SPP Inst. Cap. (MW)
R25.1,2.ISO. 3	2025 Mainland with WPP Installed Capacity: 7500 MW and SPP Installed Capacity: I2,000 MW (High RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*	2025	1.2\%	40.0\%	20.0\%	Isolated	7,500	12,000
R25.1,2.ISO. 4	2025 Mainland with WPP Installed Capacity: 2000 MW and SPP Installed Capacity: 8000 MW	2025	1.2\%	10.0\%	0.0\%	Isolated	2,000	8,000
R25.1,2.ISO. 5	2025 Mainland with WPP Installed Capacity: 3500 MW and SPP Installed Capacity: 9000 MW	2025	1.2\%	10.0\%	0.0\%	Isolated	3,500	9,000
R25.1,2.ISO. 6	2025 Mainland with WPP Installed Capacity: 4000 MW and SPP Installed Capacity: 10000 MW	2025	1.2\%	15.0\%	10.0\%	Isolated	4,000	10,000
R25.1,2.ISO. 7	2025 Mainland with WPP Installed Capacity: 5000 MW and SPP Installed Capacity: 10000 MW	2025	1.2\%	15.0\%	10.0\%	Isolated	5,000	10,000
R25.1,2.ISO. 8	2025 Mainland with WPP Installed Capacity: 4000 MW and SPP Installed Capacity: 12000 MW	2025	1.2\%	20.0\%	15.0\%	Isolated	4,000	12,000
R25.1,2.ISO. 9	2026 Mainland with WPP Installed Capacity: 4500 MW and SPP Installed Capacity: 12500 MW	2025	1.2\%	25.0\%	15.0\%	Isolated	4,500	12,500
R25.1,2.ISO. 10	2025 Mainland with WPP Installed Capacity: 5000 MW and SPP Installed Capacity: I 3000 MW	2025	1.2\%	30.0\%	20.0\%	Isolated	5,000	13,000

3.4. ASSUMPTIONS

Simulation results were impacted by three assumptions groupings:

- Future uncertainty
- Data quality
- The need for simplification

The following table summarizes the assumptions that have been used for calculations. Main reason for assumptions and impact of the assumptions have also been presented in the table.

Scale of impact score is categorized as follows: I: Negligible, 2: Minor, 3: Moderate, 4: High, 5: Very high

Table 3: Set of Assumptions for Flexibility Assessment

No	Assumption	Main Reason for Assumption	Impact of the Assumption	Impact Score (1-5)
1	Scope of Power System: Burshtyn Island has been excluded from all calculations and the calculations have been performed for the rest of IPS of Ukraine.	Need for simplification. Burshtyn Island cannot exchange energy with IPS of Ukraine since it is interconnected with ENTSOE network.	RES potential of Burshtyn Island RES is not considered in the results.	2
2	Time Series Used: We've used last 2×8760 hours of generation mix and load data between I2.05.2018 and II.05.2020.	Data quality for previous year $(2016,2017)$ is relatively worse than last 24 months.	Load and RES characteristics include only the behavior in last 24 months, which is decent enough for the assessment.	1
3	Load Growth: We have assumed 0%, $0.5 \%, 1.2 \%$ annual growth rate for 2021 and 2025 scenarios.	Future uncertainty.	Load growth is an important parameter that affects the system ramping requirements. It has direct impact on residual load.	4
4	Load Pattern: "Per unit load profile" has been accepted to remain unchanged throughout the years.	Future uncertainty. It is less likely to change in $2-5$-year horizon.	Change in customer behavior in terms of hourly load characteristics and minimum/maximum consumption have impact on hourly calculations.	2
5	Load-Temperature Variation: Potential change in the load pattern (per unit load profile) due to temperature forecast for the next years have been ignored in this study. Furthermore, temperature information has not been used to reflect market minimum conditions of Thermal Power Plants. (for the sake of simplicity).	Future uncertainty.	Forecasts for long-term temperature and weather would affect load patterns.	2

No	Assumption	Main Reason for Assumption	Impact of the Assumption	Impact Score (I-5)
6	Treatment of HPP Constraints: - Results of Ans Performance for 8 HPPs (RR) has been implemented as a constraint to flexibility capability - Indicative water usage constraints have been implemented for different seasons (winter, summer, flooding) Flexibility capability of the HPPs for the hours of the day will be limited to monthly max generation for each and every day	Unavailability of detailed data	The actual water usage constraints might be stricter/looser than the engineering assumptions.	4
7	Treatment of PSHPP Constraints: - Pumping>generating cycle has been taken care of. - Dnistrovska PSHPP - Storage Capacity II,300MWh (generating mode) (addition of a new unit has been also considered in 2025 scenarios) - $14,700 \mathrm{MWh}$ (pumping mode) - Kyivska PSHPP - Storage Capacity - 530MWh (generating mode) - 810MWh (pumping mode) - Tashlyk PSHPP - Storage Capacity (Not considered as a source of flexibility, since it has been stated that Tashlyk PSHPP by Energoatom to regulate NPP)	Assumption about the water usage constraint and operation regimes: Unavailability of detailed data of PPs and water usage requirements.	The constraints might be stricter/looser than the engineering assumptions.	4
8	Interconnection: Moldova, Belarus and Russia interconnections are considered as resource flexibility and the exchanges per hour have been restrained to figures between +400 MW and -I00MW (Per histogram analysis, 80% of all hours) for each hours of future years ${ }^{9}$ (In isolated mode of operation scenarios, crossborder exchanges have been assumed to be zero for all hours)	Future uncertainty. There is no robust future projection about the hourly energy exchanges at the interconnections, challenging an accurate assessment of impact on flexibility.	Changes with the limits may impact availability of the cross-border exchanges.	3

[^7]41 | FLEXIBILITY ASSESSMENT FOR RES PENETRATION SCENARIOS

No	Assumption	Main Reason for Assumption	Impact of the Assumption	Impact Score (I-5)
9	New Conventional Power Plants: We've assumed that no new unit/power plant will be added to NPP, CHPP, TPP, HPPs will be implemented for 202 I and 2025. (PSHPP investments planned till 2025 has been considered in the model)	Future uncertainty.	New investments (or disassembly) for the power plants with conventional resources (hydro, thermal, CHPP, NPP) would affect the system flexibility balance.	3
10	TPP Dispatch Inconsistencies: For certain hours, total generation of TPPs are smaller than total technical minimum of dispatched (active) TPP units (For some of the individual TPP units this duration even goes beyond 1000 hours). We assume technical minimum of each unit in the flexibility assessment.	Data quality.	As online flexibility concept is introduced, the inconsistencies have little impact on the ramp source calculations.	2
11	ENTSO-E Interconnection, Zamość Link: The "ENTSO-E Export" data for Burshtyn Island does not include "Dobrotvirska TPP - Zamość" link to ENTSO-E. We assume that certain units of Dobrotvirska TPP is directed to ENTSO-E interconnected network for certain hours and have been isolated from IPS of Ukraine. We also assume that while exporting to Zamość line, those units of Dobrotvirska TPP do not supply any loads in IPS of Ukraine.	The need for simplification.	As we assume that, the coverage of ENTSO-E interconnected network changes according to the energy trade plans to ENTSO-E network from Dobrotvirska TPP Zamość; assuming same trading regime will have impact on the RL calculations for IPS of Ukraine.	2
12	RES Hourly Generation Patterns: Potential RES ramp changes with the geo-spatial diversification of new WPP and SPPs have been ignored in the study.	Future uncertainty about future RES generation profiles. It should be noted that existing data (per-unit profile) lacks measurement of RES power plants in distribution level and even some of the RES in transmission level.	As geo-spatial diversification of the RES may increase, the ramp requirements may be decreased. Individual ramps occur in different times of the day, resulting in less fluctuation in the overall system flexibility balance.	4

4. RESULTS OF THE ANALYSES

4.I. VALIDATION OF THE MODEL DEVELOPED FOR THIS STUDY

For the sake of assessing the accuracy of the technical model that has been developed for Flexibility Assessment, we have analyzed the last 12 months (I2 May 2019 - II May 2020) as well.

- Final Installed Capacity of SPPs (as of May 2020) $=423 \mathrm{IMW}$
- Final Installed Capacity of WPPs (as of May 2020) $=1030 \mathrm{MW}$
- Load and generation dispatches of must-run units are assumed to be as given in the data.
- Hours with RES curtailment has been identified from Ukrenergo's declaration and the restrictions have been reverted (i.e. assumed that RES units have produced in their normal pattern. The objective is to test the model's accuracy for identification of RES curtailment needs)

Criteria-1.2: RES ramps should be below $\pm 10 \%$ of the load for all hours	
Number of hours in violation	$\%$ of hours in violation
0	0.00%

Figure I: Result for May 2019 - May 2020 in the Model

Analyzing to last 12 months, the model has resulted in downward ramping deficit in 35 hours, which would require $\sim 34 \mathrm{GWh}$ hours of RES curtailment in the power system of Ukraine. This curtailment might have been prevented with an additional $\sim 230 \mathrm{MW}$ of flexibility resources.

Date	Time	Power
5 November 2019	41 min	395 MW
22 December 2019	60 min	350 MW
7 January 2020	70 min	929 MW
14 March 2020	20 min	282.5 MW
15 March 2020	80 min	460 MW
26 March 2020	$120-170 \mathrm{~min}$	407 MW
28 March 2020	60 min	409 MW
2 April 2020	48 min	390.4 MW
3 April 2020	180 min	597.6 MW
4 April 2020	>6 hour	
5 April 2020	>5 hour	

Figure 2: RES Restriction in IPS of Ukraine between May 2019-May 202010
RES curtailment requirement that our model has resulted has been compared with Ukrenergo's announced RES curtailment levels. As declared in Ukrenergo's weekly operational reports of past 12 months, curtailed RES energy was around 23GWh (totally 23 hours in different months) in last 12 months. Comparison of these figures is used for validation of the developed model; which we think we have concluded a reasonably accurate results which ensure that results for 202 I and 2025 have decent accuracy.

[^8]
4.2. DETAILED RESULTS FOR EVALUATED SCENARIOS

The results are presented in the upcoming page in a tabular form. The tables include the following information about the results:

- Information About Main Assumption for This Scenario
- Sc. No
- Year of Calculation
- Yearly Load Growth
- Mode of Operation
- WPP Inst. Cap. (MW)
- SPP Inst. Cap. (MW)
- RLPI: RES Load Penetration Index
- REPI: RES Energy Penetration Index
- Tertiary System Reserves (MW) 95\% of all hours
- Tertiary System Reserves (MW)
- New Calculated Dispatch (Energy Balance) for Selected Scenario
- Load (TWh)
- Gen (TWh)
- Wind (TWh)
- Solar (TWh)
- TPP (TWh)
- CHPP (TWh)
- Nuclear (TWh)
- HPP (TWh)
- Run-of River
- PSP_Gen (TWh)
- PSP_Cons (TWh)
- Detailed Results for This Scenario
- Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours
- Number of hours in violation
- \% of hours in violation
- Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours
- Number of hours in violation
- \% of hours in violation
- Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours
- Number of hours in violation
- \% of hours in violation
- Annual Downward Ramping Deficit (MWh)
- Downward Ramping Deficit in \% of annual RES generation
- Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours
- Number of hours in violation
- \% of hours in violation
- Annual Upward Ramping Deficit (MWh)
- New Maneuvering Source Requirement
- Additional Maneuvering Capacity Required (MW) (Max)
- Additional Maneuvering Energy Required Yearly (MWh)
- Capacity Factor for New Capacity

The following items should be considered for the interpretation of the results.

- Each row of the table corresponds to a RES penetration level scenario.
- For each of the four criteria, if the results are within the acceptable ranges, that cell has been highlighted in green. If the results are violating the limits, they are highlighted in yellow. Limit violations should be interpreted as an indication of the inadequacy of the flexibility for the selected RES penetration level and for certain hours and the power system will be unable to accommodate it without making some adjustments.
- The violations are presented both in number of hours in violation, as well energy (MWh) in the hours of violation.

Table 4: 202I Mainland with WPP Installed Capacity: 2,585 MW and SPP Installed Capacity: 6,24I MW (RES Connection Forecast of Ukrenergo for end of 202I)

Information About Main Assumption for This Scenario																
Sc. No	Year of Calculation	Yearly Load Growth		Mode of Operation		WPP Inst. Cap. (MW)			SPP Inst. Cap. (MW)	RLPI: RES Load Penetration REPI: RES Energy Penetration			Tertiary System Reserves (MW) 95\% of all hours		Tertiary System Reserves (MW) Minimum of all hours	
R21.0,0.SQ. 1 l	2021	0.0\%		Intercon.		2,585			6,24I	42.73\%	10.83\%		1,000		735	
New Calculated Dispatch (Energy Balance) for Selected Scenario																
Load (TWh)	Gen (TWh)	Wind (TWh)	Solar			(TW	h)	C	PP (TWh)	Nuclear (TWh)		HPP (TWh)	Run-of River	PSP_Gen	(TWh)	$\begin{aligned} & \text { PSP_Cons } \\ & \text { (TWh) } \end{aligned}$
136.1	139.8	7.5				37.0			6.6	72.9		5.7	0.3	2.9		-3.1

Detailed Results for This Scenario													
Criteria I.I:RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
1	0.01\%	5	0.06\%	208	2.37\%	280,439	1.94\%	27	0.31\%	9,514	468	9,514	0.23\%

Table 5: 202I Mainland with WPP Installed Capacity: 2,585 MW and SPP Installed Capacity: 6,24I MW (RES Connection Forecast of Ukrenergo for end of 202I)

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ement
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation		\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	5	0.06\%	76	0.87\%	120,466	0.84\%	30	0.34\%	10,149	480	10,149	0.24\%

Table 6: 202I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criteria (Residu magnitude non-negat \qquad	I.I: RL Load) should be ve for all rs.	Criteria ramps s below \pm load for	I.2: RES ould be \% of the all hours	Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuvering Source Requirement		
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
1	0.01\%	8	0.09\%	104	1.19\%	168,720	1.24\%	33	0.38\%	10,614	490	10,614	0.25\%

Table 7: 2021 Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	8	0.09\%	52	0.59\%	88,372	0.65\%	36	0.41\%	11,520	509	11,520	0.26\%

Table 8: 202 I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 5,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	0	0.00\%	22	0.25\%	38,396	0.39\%	18	0.21\%	7,309	401	7,309	0.21\%

Table 9: 202I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 6,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuvering Source Requirement		
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	0	0.00\%	40	0.46\%	66,336	0.60\%	27	0.31\%	8,700	443	8,700	0.22\%

Table 10: 202I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 6,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	1	0.01\%	78	0.89\%	129,609	1.04\%	30	0.34\%	8,881	448	8,881	0.23\%

Table I I: 202 I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 7,000 MW

Detailed Results for This Scenario													
Criteria (Residu magnitude non-nega \qquad	I.I: RL Load) should be ve for all rs.	Criteria ramps s below ± 1 load for	1.2: RES ould be \% of the Il hours	Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuvering Source Requirement		
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	5	0.06\%	62	0.71\%	102,689	0.85\%	30	0.34\%	10,539	485	10,539	0.25\%

Table 12: 202I Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 6,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	2	0.02\%	182	2.08\%	252,091	1.81\%	27	0.31\%	9,157	456	9,157	0.23\%

Table 13: 202I Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
12	0.14\%	16	0.18\%	218	2.49\%	290,891	1.94\%	33	0.38\%	10,843	498	10,843	0.25\%

Table 14: 202 I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,500 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
9	0.10\%	14	0.16\%	132	1.51\%	196,665	1.40\%	39	0.45\%	11,713	509	11,713	0.26\%

Table 15: 202I Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,500 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
4	0.05\%	21	0.24\%	114	1.30\%	163,237	1.05\%	39	0.45\%	12,854	533	12,854	0.28\%

Table 16: 202I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 8,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
4	0.05\%	26	0.30\%	94	1.07\%	139,509	0.95\%	39	0.45\%	14,176	551	14,176	0.29\%

Table 17: 202 I Mainland with WPP Installed Capacity: 2,585 MW and SPP Installed Capacity: 6,24I MW (RES Connection Forecast of Ukrenergo for end of 202I)

Detailed Results for This Scenario													
Criteria (Residu magnitude non-nega ho	I.I: RL Load) should be ve for all rs.	Criteria ramps s below ± 1 load for	1.2: RES ould be \% of the Il hours	Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuvering Source Requirement		
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
2	0.02\%	5	0.06\%	240	2.74\%	326,606	2.26\%	27	0.31\%	9,881	479	9,88।	0.24\%

Table 18: 202 I Mainland with WPP Installed Capacity: 2,585 MW and SPP Installed Capacity: 6,24I MW (RES Connection Forecast of Ukrenergo for end of 202I)

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation		\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	5	0.06\%	104	1.19\%	149,009	1.03\%	30	0.34\%	10,555	491	10,555	0.25\%

Table 19: 202 I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in iolation	\% of hours in violation	Number of hours in	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
1	0.01\%	7	0.08\%	144	1.64\%	205,151	1.51\%	33	0.38\%	11,063	501	11,063	0.25\%

Table 20: 202 I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuve	ering Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in iolation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	$\begin{gathered} \text { Additional } \\ \text { Maneuvering Capacity } \\ \text { Required (MW) } \\ \text { (Max) } \end{gathered}$	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	7	0.08\%	56	0.64\%	98,528	0.73\%	36	0.41\%	11,912	518	11,912	0.26\%

Table 21: 202I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 5,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.1: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	0	0.00\%	32	0.37\%	49,846	0.50\%	21	0.24\%	7,607	411	7,607	0.21\%

Table 22: 202 I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 6,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	0	0.00\%	52	0.59\%	78,076	0.71\%	27	0.31\%	9,015	453	9,015	0.23\%

Table 23: 202I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 6,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	1	0.01\%	110	1.26\%	166,384	1.34\%	30	0.34\%	9,268	460	9,268	0.23\%

Table 24: 202 I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 7,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	5	0.06\%	74	0.84\%	116,717	0.96\%	30	0.34\%	10,904	495	10,904	0.25\%

Table 25: 202I Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 6,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	I	0.01\%	216	2.47\%	299,994	2.16\%	27	0.31\%	9,500	467	9,500	0.23\%

Table 26: 202I Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
15	0.17\%	15	0.17\%	254	2.90\%	340,164	2.27\%	33	0.38\%	11,207	510	11,207	0.25\%

Table 27: 202I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,500 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
15	0.17\%	13	0.15\%	170	1.94\%	233,520	1.66\%	39	0.45\%	12,162	520	12,162	0.27\%

Table 28: 202 I Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,500 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
9	0.10\%	21	0.24\%	130	1.48\%	189,212	1.22\%	39	0.45\%	13,302	544	13,302	0.28\%

Table 29: 202I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 8,000 MW

Detailed Results for This Scenario													
Criteria (Residu magnitude non-nega ho	I.I: RL Load) should be ve for all rs.	Criteriaramps sh below ± 1 load for	I.2: RES ould be \% of the all hours	Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuvering Source Requirement		
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
7	0.08\%	25	0.29\%	100	1.14\%	151,534	1.03\%	39	0.45\%	14,558	560	14,558	0.30\%

Table 30: 202I Mainland with WPP Installed Capacity: 2,585 MW and SPP Installed Capacity: 6,24I MW (RES Connection Forecast of Ukrenergo for end of 202I)

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ement
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
2	0.02\%	5	0.06\%	268	3.06\%	373,485	2.59\%	27	0.31\%	10,24	490	10,24 I	0.24\%

Table 31: 202I Mainland with WPP Installed Capacity: 2,585 MW and SPP Installed Capacity: 6,24I MW (RES Connection Forecast of Ukrenergo for end of 202I)

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ement
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation		\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	5	0.06\%	132	1.51\%	184,390	1.28\%	30	0.34\%	10,978	502	10,978	0.25\%

Table 32: 202 I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criter (Resid magnitud non-neg ho	I.I: RL Load) should be ve for all rs.	Criteria ramps s below \pm load for	1.2: RES ould be \% of the Ill hours	Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuvering Source Requirement		
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
3	0.03\%	7	0.08\%	178	2.03\%	257,143	1.90\%	36	0.41\%	11,534	513	11,534	0.26\%

Table 33: 202 I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,000 MW (RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	7	0.08\%	66	0.75\%	112,717	0.83\%	36	0.41\%	12,328	528	12,328	0.27\%

Table 34: 202I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 5,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	0	0.00\%	38	0.43\%	71,488	0.72\%	21	0.24\%	7,94I	422	7,941	0.21\%

Table 35: 202I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 6,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.1: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	0	0.00\%	56	0.64\%	100,032	0.91\%	27	0.31\%	9,375	464	9,375	0.23\%

Table 36: 202I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 6,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	1	0.01\%	144	1.64\%	217,916	1.75\%	30	0.34\%	9,677	472	9,677	0.23\%

Table 37: 202I Mainland with WPP Installed Capacity: I,500 MW and SPP Installed Capacity: 7,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.1: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	3	0.03\%	84	0.96\%	141,216	1.17\%	36	0.41\%	11,296	505	11,296	0.26\%

Table 38: 202I Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 6,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	1	0.01\%	250	2.85\%	346,262	2.49\%	27	0.31\%	9,86I	479	9,861	0.24\%

Table 39: 202I Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
19	0.22\%	12	0.14\%	292	3.33\%	386,610	2.57\%	36	0.41\%	1 1,587	520	1 1,587	0.25\%

Table 40: 202I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 7,500 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
18	0.21\%	13	0.15\%	208	2.37\%	286,483	2.04\%	39	0.45\%	12,634	532	12,634	0.27\%

Table 4I: 202I Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,500 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
12	0.14\%	19	0.22\%	162	1.85\%	220,620	1.42\%	39	0.45\%	13,783	555	13,783	0.28\%

Table 42: 202 I Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 8,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
9	0.10\%	23	0.26\%	110	1.26\%	165,764	1.13\%	39	0.45\%	14,966	569	14,966	0.30\%

Table 43: $\mathbf{2 0 2 5}$ Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,500 MW (Min RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ement
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in	$\% \text { of }$ hours in violation	Annual Upward Ramping Deficit (MWh)	Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
4	0.05\%	18	0.21\%	96	1.10\%	147,839	0.95\%	30	0.34\%	12,816	531	12,816	0.28\%

Table 44: $\mathbf{2 0 2 5}$ Mainland with WPP Installed Capacity: 3,000 MW and SPP Installed Capacity: 9,500 MW (Medium RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuve	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in iolation	\% of hours in violation	Number of hours in	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	$\begin{gathered} \text { Additional } \\ \text { Maneuvering Capacity } \\ \text { Required (MW) } \\ \text { (Max) } \end{gathered}$	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
114	1.30\%	139	1.59\%	212	2.42\%	299,837	1.56\%	43	0.49\%	19,980	645	19,980	0.35\%

Table 45: $\mathbf{2 0 2 5}$ Mainland with WPP Installed Capacity: 7,500 MW and SPP Installed Capacity: I2,000 MW (High RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
231	2.64\%	697	7.96\%	500	5.71\%	749,097	2.13\%	168	1.92\%	75,902	1,063	75,902	0.81\%

Table 46: 2025 Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 8,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
4	0.05\%	21	0.24\%	74	0.84\%	110,465	0.75\%	30	0.34\%	13,902	556	13,902	0.29\%

Table 47: 2025 Mainland with WPP Installed Capacity: 3,500 MW and SPP Installed Capacity: 9,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
118	1.35\%	102	1.16\%	292	3.33\%	400,163	1.99\%	38	0.43\%	18,118	626	18,118	0.33\%

Table 48: 2025 Mainland with WPP Installed Capacity: 4,000 MW and SPP Installed Capacity: 10,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
156	1.78\%	225	2.57\%	304	3.47\%	407,419	1.79\%	53	0.61\%	24,920	708	24,920	0.40\%

Table 49: 2025 Mainland with WPP Installed Capacity: 5,000 MW and SPP Installed Capacity: 10,000 MW

Detailed Results for This Scenario													
Criteria (Residu magnitude non-nega ho	I.I: RL Load) should be ve for all rs.	Criteria ramps s below ± 1 load for	1.2: RES ould be \% of the Il hours	Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuvering Source Requirement		
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
150	1.71\%	270	3.08\%	336	3.84\%	477,841	1.87\%	60	0.68\%	29,745	755	29,745	0.45\%

Table 50: 2025 Mainland with WPP Installed Capacity: 4,000 MW and SPP Installed Capacity: 12,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
239	2.73\%	528	6.03\%	320	3.65\%	447,884	1.81\%	85	0.97\%	41,979	840	41,979	0.57\%

Table 5 I: 2025 Mainland with WPP Installed Capacity: 4,500 MW and SPP Installed Capacity: 12,500 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
177	2.02\%	631	7.20\%	300	3.42\%	428,928	1.59\%	125	1.43\%	58,349	931	58,349	0.72\%

Table 52: 2025 Mainland with WPP Installed Capacity: 5,000 MW and SPP Installed Capacity: I3,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
187	2.13\%	722	8.24\%	348	3.97\%	486,485	1.68\%	158	1.80\%	72,380	1,002	72,380	0.82\%

Table 53: 2025 Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,500 MW (Min RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Information About Main Assumption for This Scenario															
Sc. No	Year of Calculation	Yearly Load Growth		Mode of Operation		WPP Inst. Cap. (MW)		SPP Inst. Cap. (MW)	RLPI: RES Load Penetration REPI: RES Energy Penetration Index Index			Tertiary System Reserves (MW) 95% of all hours		Tertiary Minim	Reserves) all hours
R25.1,2.SQ. 1	2025	1.2\%		Intercon.		2,500		7,500	44.72\%		10.87\%	800			
New Calculated Dispatch (Energy Balance) for Selected Scenario															
Load (TWh)	Gen (TWh)	Wind(TWh) \quad Solar (TWh)			TPP (TWh)		CHPP (TWh)		Nuclear (TWh)		HPP (TWh)	Run-of River	PSP_Gen (TWh) PSP_Cons (TWh)		
146.2	149.1	7.3 8.3			41.8		6.6		72.9		8.2	0.3	3.7		-4.0

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.1: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ement
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	11	0.13\%	46	0.53\%	82,024	0.53\%	35	0.40\%	17,478	622	17,478	0.32\%

Table 54: $\mathbf{2 0 2 5}$ Mainland with WPP Installed Capacity: 3,000 MW and SPP Installed Capacity: 9,500 MW (Medium RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than 1% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additiona Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
40	0.46\%	105	1.20\%	124	1.42\%	196,248	1.02\%	53	0.61\%	26,306	727	26,306	0.41\%

Table 55: $\mathbf{2 0 2 5}$ Mainland with WPP Installed Capacity: 7,500 MW and SPP Installed Capacity: I2,000 MW (High RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requ	ment
Number of hours in violation	\% of hours in violation	Number of hours in	\% of hours in violation	Number of hours in	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
78	0.89\%	598	6.83\%	278	3.17\%	445,365	1.27\%	260	2.97\%	120,687	1,204	120,687	1.14\%

Table 56: 2025 Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 8,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	13	0.15\%	48	0.55\%	84,612	0.58\%	38	0.43\%	19,523	652	19,523	0.34\%

Table 57: 2025 Mainland with WPP Installed Capacity: 3,500 MW and SPP Installed Capacity: 9,000 MW

Detailed Results for This Scenario													
Criteria (Residu magnitude non-nega ho	I.I: RL Load) should be ve for all rs.	Criteria ramps s below ± 1 load for	1.2: RES ould be \% of the Il hours	Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuvering Source Requirement		
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
45	0.51\%	70	0.80\%	192	2.19\%	257,236	1.28\%	50	0.57\%	24,035	698	24,035	0.39\%

Table 58: 2025 Mainland with WPP Installed Capacity: 4,000 MW and SPP Installed Capacity: 10,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
43	0.49\%	172	1.96\%	140	1.60\%	212,712	0.94\%	68	0.78\%	36,449	811	36,449	0.51\%

Table 59: 2025 Mainland with WPP Installed Capacity: 5,000 MW and SPP Installed Capacity: 10,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
54	0.62\%	213	2.43\%	174	1.99\%	269,079	1.05\%	85	0.97\%	42,116	846	42,116	0.57\%

Table 60: 2025 Mainland with WPP Installed Capacity: 4,000 MW and SPP Installed Capacity: 12,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
54	0.62\%	427	4.87\%	190	2.17\%	283,366	1.14\%	133	1.52\%	68,22 I	985	68,22I	0.79\%

Table 61: 2025 Mainland with WPP Installed Capacity: 4,500 MW and SPP Installed Capacity: 12,500 MW

Information About Main Assumption for This Scenario																	
Sc. No	Year of Calculation	Year Gr	Load wh	Mode of Operation		WPP Inst. Cap. (MW)		SPP Inst. Cap. (MW)		RES Load Penetration Index	REPI: RES	Ener	gy Penetration ex	Tertiary System (MW) 95\% of all h	Reserves hours	Tertiary Minimu	System Reserves (MW) mum of all hours
R25.1,2.SQ. 9	2025			Intercon.		4,500		12,500		76.09\%		18.6	63\%	800			216
New Calculated Dispatch (Energy Balance) for Selected Scenario																	
Load (TWh)	Gen (TWh)	Wind(TWh) \quad Solar (TWh)			TPP (TWh) C			CHPP (TWh)	Nuclear (TWh)				HPP (TWh)	Run-of River	PSP_Gen (TWh) PSP_Cons (TWh)		
146.2	148.8	13.1	13.8		55.5		5.2		48.6				8.5	0.3	3.7	-4.0	

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
38	0.43\%	541	6.18\%	176	2.01\%	266,070	0.99\%	208	2.37\%	98,435	1,092	98,435	1.03\%

Table 62: 2025 Mainland with WPP Installed Capacity: 5,000 MW and SPP Installed Capacity: 13,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
45	0.51\%	639	7.29\%	210	2.40\%	310,246	1.07\%	250	2.85\%	120,257	1,165	120,257	1.18\%

Table 63: 2025 Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,500 MW (Min RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requ	ment
Number of hours in violation	\% of hours in violation	Number of hours in	\% of hours in violation	Number of hours in	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
4	0.05\%	18	0.21\%	232	2.65\%	330,675	2.12\%	110	1.26\%	50,419	1,086	50,419	0.53\%

Table 64: 2025 Mainland with WPP Installed Capacity: 3,000 MW and SPP Installed Capacity: 9,500 MW (Medium RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than 1% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
114	1.30\%	139	1.59\%	414	4.73\%	573,344	2.98\%	163	1.86\%	73,210	1,258	73,210	0.66\%

Table 65: $\mathbf{2 0 2 5}$ Mainland with WPP Installed Capacity: 7,500 MW and SPP Installed Capacity: 12,000 MW (High RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requ	ment
Number of hours in violation	\% of hours in violation	Number of hours in	\% of hours in violation	Number of hours in	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
231	2.64\%	697	7.96\%	728	8.31\%	1,108,235	3.16\%	508	5.80\%	234,188	1,850	234,188	1.45\%

Table 66: 2025 Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 8,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
4	0.05\%	21	0.24\%	160	1.83\%	250,706	1.71\%	108	1.23\%	54,676	1,112	54,676	0.56\%

Table 67: 2025 Mainland with WPP Installed Capacity: 3,500 MW and SPP Installed Capacity: 9,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
118	1.35\%	102	1.16\%	520	5.94\%	708,222	3.52\%	148	1.69\%	66,238	1,232	66,238	0.61\%

Table 68: 2025 Mainland with WPP Installed Capacity: 4,000 MW and SPP Installed Capacity: 10,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
156	1.78\%	225	2.57\%	506	5.78\%	708,559	3.12\%	190	2.17\%	90,400	I,350	90,400	0.76\%

Table 69: 2025 Mainland with WPP Installed Capacity: 5,000 MW and SPP Installed Capacity: 10,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
150	1.71\%	270	3.08\%	570	6.51\%	787,416	3.07\%	225	2.57\%	105,592	1,427	105,592	0.84\%

Table 70: 2025 Mainland with WPP Installed Capacity: 4,000 MW and SPP Installed Capacity: 12,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
166	1.89\%	534	6.10\%	434	4.95\%	612,313	2.46\%	338	3.86\%	159,938	1,516	159,938	1.20\%

Table 71: 2025 Mainland with WPP Installed Capacity: 4,500 MW and SPP Installed Capacity: 12,500 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
177	2.02\%	631	7.20\%	468	5.34\%	674,387	2.51\%	420	4.79\%	192,013	I,658	192,013	1.32\%

Table 72: 2025 Mainland with WPP Installed Capacity: 5,000 MW and SPP Installed Capacity: I3,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation		Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
247	2.82\%	715	8.16\%	576	6.58\%	855,484	2.97\%	448	5.11\%	205,069	1,769	205,069	1.32\%

Table 73: $\mathbf{2 0 2 5}$ Mainland with WPP Installed Capacity: 2,500 MW and SPP Installed Capacity: 7,500 MW (Min RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ering Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	11	0.13\%	106	1.21\%	193,784	1.24\%	125	1.43\%	66,882	1,191	66,882	0.64\%

Table 74: 2025 Mainland with WPP Installed Capacity: $\mathbf{3 , 0 0 0}$ MW and SPP Installed Capacity: 9,500 MW (Medium RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in iolation	\% of hours in violation	Number of hours in	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
40	0.46\%	105	1.20\%	250	2.85\%	380,343	1.98\%	198	2.26\%	95,718	1,35 I	95,718	0.81\%

Table 75: $\mathbf{2 0 2 5}$ Mainland with WPP Installed Capacity: 7,500 MW and SPP Installed Capacity: I2,000 MW (High RES Penetration Scenario in Ukrenergo's Generation Adequacy Report)*

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ement
Number of hours in violation	\% of hours in violation	Number of hours in volation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
141	1.61\%	598	6.83\%	574	6.55\%	902,952	2.57\%	613	7.00\%	288,100	1,969	288,100	1.67\%

Table 76: 2025 Mainland with WPP Installed Capacity: 2,000 MW and SPP Installed Capacity: 8,000 MW

Detailed Results for This Scenario													
Criteria (Residu magnitude non-nega \qquad	I.I: RL Load) should be ve for all rs.	Criteria ramps s below ± 1 load for	1.2: RES ould be \% of the Il hours	Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuvering Source Requirement		
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
0	0.00\%	13	0.15\%	118	1.35\%	191,249	1.30\%	133	1.52\%	74,130	1,218	74,130	0.69\%

Table 77: 2025 Mainland with WPP Installed Capacity: 3,500 MW and SPP Installed Capacity: 9,000 MW

Detailed Results for This Scenario													
Criteria (Residu magnitude non-negat hou	I.I: RL Load) should be ve for all rs.	Criteriaramps sh below ± 10 load for	1.2: RES ould be \% of the ll hours	Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuvering Source Requirement		
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
45	0.51\%	70	0.80\%	328	3.74\%	490,116	2.43\%	170	1.94\%	87,336	I,327	87,336	0.75\%

Table 78: 2025 Mainland with WPP Installed Capacity: 4,000 MW and SPP Installed Capacity: 10,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
69	0.79\%	172	1.96\%	346	3.95\%	514,868	2.27\%	240	2.74\%	117,590	1,453	117,590	0.92\%

Table 79: 2025 Mainland with WPP Installed Capacity: 5,000 MW and SPP Installed Capacity: 10,000 MW

Detailed Results for This Scenario														
Criteria (Residu magnitude non-nega ho	I.I: RL Load) should be ve for all rs.	Criteria ramps s below ± 1 load for	1.2: RES ould be \% of the Il hours	Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuvering Source Requirement			
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity	
129	1.47\%	208	2.37\%	550	6.28\%	792,909	3.11\%	248	2.83\%	\|19,071	1,494	\|19,07		0.91\%

Table 80: 2025 Mainland with WPP Installed Capacity: 4,000 MW and SPP Installed Capacity: 12,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
148	1.69\%	434	4.95\%	400	4.57\%	602,984	2.42\%	363	4.14\%	182,415	I,594	182,415	1.31\%

Table 81: 2025 Mainland with WPP Installed Capacity: 4,500 MW and SPP Installed Capacity: 12,500 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
154	1.76\%	541	6.18\%	430	4.91\%	663,744	2.47\%	465	5.31\%	217,064	1,749	217,064	1.42\%

Table 82: 2025 Mainland with WPP Installed Capacity: 5,000 MW and SPP Installed Capacity: I3,000 MW

Detailed Results for This Scenario													
Criteria I.I: RL (Residual Load) magnitude should be non-negative for all hours.		Criteria-I.2: RES ramps should be below $\pm 10 \%$ of the load for all hours		Criteria\#2.I: Downward ramping deficit should be lower than I\% of the load for 99% of the hours				Criteria\#2.2: Upward ramping deficit should be lower than I\% of the load for 99% of the hours			New Maneuver	ring Source Requir	ment
Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Number of hours in violation	\% of hours in violation	Annual Downward Ramping Deficit (MWh)	Downward Ramping Deficit in \% of annual RES generation	Number of hours in violation	\% of hours in violation	Annual Upward Ramping Deficit (MWh)	Additional Maneuvering Capacity Required (MW) (Max)	Additional Maneuvering Energy Required Yearly (MWh)	Capacity Factor for New Capacity
161	1.84\%	639	7.29\%	466	5.32\%	724,116	2.50\%	553	6.31\%	260,128	1,872	260,128	1.59\%

5. ECONOMIC ASSESSMENT OF FLEXIBILITY OPTIONS

In this part of the study, four different flexibility options has been compared from cost perspective to the power sector of Ukraine. The assessed flexibility options include the following alternatives:

- RES Curtailment for Downward Ramping + ProActive RES Curtailment for Upward Ramping

2025, Baseline Scenario: I2.5GW RES, I.2\% Annual Demand Growth Interconnected Mode of Operation

Downward Ramping Deficit (RES Energy to be Curtailed, if that is the option): 196GWh, which is 1.02% of yearly RES generation (number of hours that system will be forced to RES restriction: 124 hours)

Upward Ramping Deficit (Energy Required from New Flexible Capacity): 26.3 GWh (in 53 hours)

Maximum Additional Maneuvering Capacity Required: 727 MW (capacity factor: 0.41% for upward ramping)

- Gas Engines
- Battery Storage
- Pump Storage

For the economic assessment, 2025 baseline scenario has been considered with I2.5GW RES (3000MW WPP and 9500 MW SPP) with I. 2% of annual demand increase and interconnected mode of operation. This scenario has resulted in need;

- Downward Ramping Deficit (RES Energy to be Curtailed, if that is the option): I96GWh, which is 1.02% of yearly RES generation (number of hours that system will be forced to RES restriction: 124 hours)
- Upward Ramping Deficit (Energy Required from New Flexible Capacity): 26.3 GWh (in 53 hours)
- Maximum Additional Maneuvering Capacity Required: 727 MW (capacity factor: 0.4I\% for upward ramping)

The economic assessment has been developed for three cost items, which include;

- CAPEX
- OPEX
- Cost of Energy Restrictions.

The following table presents the outcome of the economic assessment which include;

- Pre-requisites for Implementation
- Time Required for Implementation
- CAPEX Assumptions ${ }^{11}$
- CAPEX Amount
- OPEX Assumptions ${ }^{12}$
- Annual OPEX Amount
- Assumptions About Cost of Energy Restrictions
- Deemed Energy Cost of RES (Cost of RES Restrictions)
${ }^{11}$ Most up-to-date version of Lazard's key assumptions have been used for new construction and OPEX items of power storage, gas engines power plants and PSHPPs.
${ }^{12}$ Most up-to-date version of Lazard's key assumptions have been used for new construction and OPEX items of power storage, gas engines power plants and PSHPPs.
127 | FLEXIBILITY ASSESSMENT FOR RES PENETRATION SCENARIOS

Cost Items	RES Curtailment for Downward Ramping + Pro-Active RES Curtailment for Upward Ramping	Gas Engines	Battery Storage	Pump Storage
Pre-requisites for Implementation	- RES Curtailment Management System (RES-CMS) - Short Term Load Forecast System (STLFS) -already available - Short Term RES Forecasting System (STRESFS) already available at TSO and ESP project for the Guaranteed Buyer and TSO underway - Direct Integration of WPP \& SPP Controllers to Dispatch Centre (for directly sending set points to PPs)	- Identification of best sites and capacities for optimal flexibility to be provided.	- Identification of best sites and capacities for optimal flexibility to be provided.	- Identification of best sites and capacities for optimal flexibility to be provided (Limited available sites (i.e., water availability required). - Incorporation of water usage constraint is key for best design schemes.
Time Required for Implementation	- 6 months for implementation of analytical forecasting and management systems. - 6 to 9 months for direct integration of RES PPs to Ukrenergo Dispatch Center (optional)	- 12 months of construction time	- I8 -24 months of construction time	- 3-5 years of construction time
CAPEX Assumptions	- Cost of Implementation of RES-CMS, STLFS and STRESFS: IOM USD - Cost of RES Connection to Control Center - Number of WPPs in 2025: 100 (in average 30 MW capacity) - Number of SPPs in 2025: 1250 (in average 7.5 MW capacity) - RTU panel with all SCADA engineering for each WPP: 100k USD - RTU panel with all SCADA engineering for each WPP: 20k USD	- Build Cost: $700 \$ / \mathrm{kW}$ - Installed Capacity of 727 MW	- Assumed that each unit will be IOMW/40MWh - Initial Capital Cost-AC: 70\$/kW - Initial Capital Cost-DC: 228\$/kWh - Total Installed Capacity of 727 MW/2908MWh	- Assumed that each unit will be I00MW/800MWh - Installed Capacity of 727MW/5,816MWh - Build Cost: $238 \$ / k W h$
CAPEX (Million USD)	45.0	508.9	713.9	1384.2
OPEX Assumptions	- Annual OPEX of Automation System: 10\% of CAPEX - Annual OPEX of Analytical IT System: 10\% of CAPEX	- Fixed O\&M: 7\$/kW-yr - Variable O\&M: 4.7\$/MWh - Heat Rate: 8000 Btu/kWh - Capacity Factor (for upward ramping): 0.41% - Fuel Price: $3 \$ / \mathrm{MBtu}$	- O\&M: 0.8\$/kWh - Warranty Expenses in \% of CAPEX: 3% - Loss of Energy due to Efficiency of Storage: 10\% - Average MWh Energy price: 30\$/MWh - For upward ramping deficit: 26.3GWh - For downward ramping deficit: 196GWh	- Fixed O\&M: I\% of OPEX annual. - Variable O\&M: 4\$/MWh - Loss of Energy due to Efficiency of PSHPP: 20\% - Average MWh Energy price: 30\$/MWh - For upward ramping deficit: 26.3GWh - For downward ramping deficit: 196GWh
Fixed O\&M (Annual, Million USD)	4.5	5.09	21.42	13.84
Variable O\&M (Annual, Million USD)	-	0.12	0.18	0.89

Cost Items	RES Curtailment for Downward Ramping + Pro-Active RES Curtailment for Upward Ramping	Gas Engines	Battery Storage	Pump Storage
Fuel Cost (or Losses for Storage) (Annual, Million USD)	-	0.42	0.67	1.33
Annual OPEX (Million USD)	4.5	5.6	22.26	16.1
Assumptions About Cost of Energy Restrictions	- For downward ramping, the system will have 196GWh of deficit, that will be curtailed from RES generation. - For provision of upward ramping of 26.3 GWh (53 hours) required from RES via pro-active curtailment, we assume that despite the fact that analytical tools will be used, due to certain error margin of forecasting, more RES will be curtailed then the actual system requirement, which also have been incorporated in the cost calculation. Furthermore, additional incentives for RES power plants to support this upward ramping needs is also estimated. - Assumed unit price for curtailed RES generation: $57 \$ / \mathrm{MWh}$ (price in day-ahead market is assumed, since the cost difference between curtailing and not curtailing of RES can be compensated from DAM prices.) - Assumed unit price for upward regulation in balancing market: $62 \$ / \mathrm{MWh}$	Assumed as zero.	Assumed as zero.	Assumed as zero.
Deemed Energy Cost of RES (Cost of RES Restrictions)	12.8	0	0	0
Total Cost (Ist Year of Operation) (Million USD)	62.3	514.5	736.2	1400.3
Total Cost (5 years) (Million USD)	131.5	537.0	825.2	1464.5
Total Cost (20 years) (Million USD)	391.1	621.5	1159.2	1705.5

6. CONCLUSION AND DISCUSSIONS

6.I. CONCLUSION

Key conclusions and findings of the flexibility assessment are summarized as follows:

- RES penetration levels above 4,300MW installed capacity creates a ramping deficit in IPS of Ukraine with the existing load levels. At this level of RES capacity, our flexibility assessment model has resulted a deficit of in need of RES curtailment of 30 GWh (35 hours) ${ }^{13}$ in the last 12 months, till May 2020. This curtailment might have been prevented via an additional flexibility resource of 230 MW (that would work with a I.5\% yearly capacity factor, if this gap would have been filled with new generation capacities)
- In order to have a decreased level of flexibility inadequacy in the system, our model has resulted with a $5-15 \%$ (depends on RES penetration levels) reduction of nuclear generation in 2021. (For baseline scenario, 5% nuclear generation reduction has been required. For higher level of RES penetration levels, higher reduction in the must-run power plants' generation is implemented in 2025).
- Considering the interconnections with neighbor countries as a flexibility resource is an important contributor to reduce the flexibility inadequacy of the system ${ }^{14}$
- Necessity for RES Curtailment and new flexibility resources are inevitable for all scenarios that has been studied for 2021 and 2025.
- For all scenarios in 2021 and 2025; in case the required additional flexibility resource (Upward Ramping Deficit) is met with construction of new power plants, their capacity factor within the year will be lower than 2-3\%.
- For the Baseline Scenario of 2021 (8,826MW RES installed capacity, 0.5% load growth),
- Downward Ramping Deficit (RES Energy to be Curtailed): I49GWh, which is I.03\% of yearly RES generation (number of hours that system will be forced to RES restriction: I04 hours)
- Upward Ramping Deficit (Energy Required from New Flexible Capacity): I0.5 GWh (in 10 hours)
- Maximum Additional Maneuvering Capacity Required: 49I MW (capacity factor: 0.25\% for upward ramping requirements)
- For the Baseline Scenario-I of 2025 (8,826MW RES installed capacity, 1.2% annual load growth, interconnected mode of operation),
- Downward Ramping Deficit (RES Energy to be Curtailed): I96GWh, which is 1.02% of yearly RES generation (number of hours that system will be forced to RES restriction: 124 hours)

[^9]- Upward Ramping Deficit (Energy Required from New Flexible Capacity): 26.3 GWh (in 53 hours)
- Maximum Additional Maneuvering Capacity Required: 727 MW (capacity factor: 0.41% for upward ramping requirements)
- For the Baseline Scenario-2 of 2025 (8,826MW RES installed capacity, I. 2% annual load growth, isolated mode of operation),
- Downward Ramping Deficit (RES Energy to be Curtailed): 380 GWh, which is 1.98% of yearly RES generation (number of hours that system will be forced to RES restriction: 250 hours)
- Upward Ramping Deficit (Energy Required from New Flexible Capacity): 95.7 GWh (in 198 hours)
- Maximum Additional Maneuvering Capacity Required: I35I MW (capacity factor: 0.8I\% for upward ramping requirements)
- In comparison with Ukrenergo's Generation Adequacy study results that state that;
- in 2021, 2000 MW of highly maneuverable thermal power plants and 2000 MW of Power Storage capacity,
- and in 2025, 2000 MW of highly maneuverable thermal power plants and 2550 MW of Power Storage capacity
will be required; our results in baseline and interconnected mode of operations showed that,
- in 2021, the maximum upward ramping deficit might be experienced for just 10 hours within the year and the maximum capacity of this deficit is 491 MW ,
- and in 2025, the maximum upward ramping deficit might be experienced for 53 hours within the year and the maximum capacity of this deficit is 727MW,
- For selection of flexibility resources required, there are variety of options including,
- RES curtailment for downward ramping requirements and pro-active RES curtailment for upward ramping,
- power storage,
- internal combustion engines,
- additions of new pump storage hydro power plants,
- demand response,
- and modernization of existing thermal power plants to provide more available and flexible capacities
The decision should be made on economic studies in terms of cost/benefit ratios and the time required for implementation. Per our calculations, if the flexibility deficit is met with construction of new power plants, the capacity factors of these new plants will be lower than 1% in 2021 and lower than $\sim 3 \%$ in 2025.
- As the basic economic assessment of the costs of the four flexibility options (RES curtailment for downward ramping requirements and pro-active RES curtailment for upward ramping, power storage, internal combustion engines, additions of new pump storage hydro power plants) show that the most feasible options is considering RES curtailment as a source flexibility is the economically most viable option for 2025 of Ukraine PS. Our study concludes that implementing RES curtailment during
infrequent extreme ramping rate events can potentially be a least cost option as compared to investment in low capacity factor generation flexibility. Accurate short-term load, generation and weather forecasting and curtailment automation are however required for effective implementation of this option (which are also considered as costs items in the basic economic assessment of this study).
- Existing installed capacities of WPPs and SPPs indicate that solar generation investment tend to be higher in Ukraine. Wind/solar ratio in RES generation mix is an important factor for the flexibility adequacy of the power system. In this context, scenarios with same installed capacity of wind and solar are less likely to occur. We estimate that solar/wind ratio will be around 3 (solar generation installed capacity will be 3 times of wind installed capacity)
- As higher wind ratio in wind/solar mix brings in more challenges to adequate ramp adjustments in comparison with solar; wind power plants should be more carefully assessed.

6.2. PRO-ACTIVE RES CURTAILMENT FOR UPWARD RAMPING

Renewable generation from wind and solar power plants are expected to play an important role in the future of Ukraine Power System. On the other hand, varying outputs of WPPs and SPPs bring in additional challenges to the system operator (Ukrenergo) to meet the flexibility requirements of the network.

If IPS of Ukraine does not have enough operational flexibility - particularly upward ramping capability-this might result in security and reliability deficits such as need for load shedding. Overgeneration, generally is experienced when the production of must-run unit, including RES, nuclear generation, minimum hydro, and CHPP generation, is larger than the system load plus the system's capability to export.

While investment in power system flexibility solutions such as flexible gas generation or energy storage could help mitigate overgeneration, eliminating all overgeneration may not be cost-effective. As the share of wind and PV generation increases, so does the need to invest in generation flexibility. However, if the grid becomes overinvested in generation flexibility, some capacity will only be needed for a few hours annually, which is not cost efficient.

In this context, we, in this study, suggest that RES curtailment as a flexibility source, to eliminate both downward and upward ramping deficits, should be considered as a least cost option as compared to investment in low capacity factor generation flexibility.

RES curtailment has been used by TSOs in various countries during the periods when there were network constraints, security constraints and excess generation relative to the system load. RES curtailment can form part of normal system operation during long-term capacity expansion modelling as a method to reduce the number of future units required for generation flexibility (especially from a ramping rate perspective).

Managed curtailment of renewable energy generation may be needed to avoid curtailment of system load due to lack of power system flexibility, for example, by helping to meet sharp upward or downward ramps or making room for additional operating reserves. RES curtailment enables RES to provide ramping services, allowing dispatchable resources to continue to operate at their minimum generating levels rather than shutting down and better positioning the system to meet upward ramps.

The loss from curtailing generation based on renewable energy sources is generally seen as an unacceptable solution by the public. The main argument is that it is a loss of green energy and an economic loss to curtail generation with near zero marginal costs. However, this approach could lead to overinvestment in grid infrastructure or new flexible capacities and underinvestment in renewable energy sources.

Dynamic/Pro-Active RES curtailment can provide a least cost flexibility option when compared to traditional generators operating at low capacity factors. However, while the idea of curtailment is conceptually easy, the implementation has several operational challenges that need to be considered.

Operational Considerations:

Currently, the system operation focuses on continuously matching supply with varying demand as economically as possible, while maintaining acceptable system reliability. This is achieved by a sequence of temporally separated control actions (both centralized and decentralized), based on the natural temporal decomposition of the load demand.

To enable the pro-active RES curtailment for upward ramping, TSO must be prepared to curtail renewable energy output at any time in order to prevent potential upward ramping shortages. This finding may be intuitive; however, it is not clear that most TSOs are prepared for widespread use of RES curtailment for this purpose.

Operators should develop a formalized process for determining RES curtailment, which might consist of the following steps:

- Continually monitor actual and forecast RES generation and develop confidence intervals around renewable energy forecasts over several hours in order to ensure that unit commitment decisions are made with the best available RES forecast data.
- Continually monitor available upward ramping capability, whether from hydro resources (HPP, PSHPP) and thermal resources (TPPs)
- Develop and implement rules for when to dispatch prospective curtailment of RES output. These rules would likely entail comparing forecast RES generation, along with confidence bands, over various timesteps (I hour, 4 hours, etc.) with available upward ramping capability. If the expected upward ramping need caused by RES output fluctuations exceeds the upward capability subject to a given confidence interval (e.g., 99\%), the rule would call for RES curtailment to avoid a forecasted potential upward ramping shortfall.

These operational procedures should definitely be supported by implementation of central analytical tools and advanced automation in RES sites:

- Short-Term Weather Forecast System,
- Short-Term Load Forecast System,
- Short-Term RES Forecast System
- Direct Integration of Wind and Solar Power Plant Controllers to Ukrenergo Dispatch Center (for directly sending set points to PPs)

Other Technical Challenges

- Measuring Restricted Generation: While it is conceptually simple to issue dispatch instructions to RES to operate at or below a given set point on an emergency basis, additional information is required in order to provide accurate compensation. TSO could calculate the lost production using real-time data on insolation, wind speed, and air density, along with technology-specific power curves. This method is data-intensive but is required to eliminate any potential conflicts with RES owners.
- System Modelling: Assessing the economic tradeoff between RES curtailment and investment in power system flexibility will require the development and deployment of new modeling techniques. Conventional generation reliability modeling has evaluated the likelihood that load would exceed available generation capacity.

In summary, we think that RES curtailment may serve as a "default" or "backstop" grid flexibility solution against which to measure the cost-effectiveness of investments in power system flexibility. Investment in power system flexibility is indicated when the benefits from investment, in the form of reduced curtailment, outweigh the costs of new flexible power plant investments. Very accurate short-term forecasting and data-intensive curtailment automation are however required for effective implementation of this flexibility option.

6.3. LIMITATIONS OF THE STUDY

The following facts should be considered to understand the limitations of the results:

- The study has not been built on a well-developed demand forecast and a least-cost generation planning:
- As the assumptions for the future demand are based on the existing per-unit load profile, change in the load characteristics are not considered.
- Load growth introduced is the result of basic assumptions ($0.0 \%, 0.5 \%, \mathrm{I} .0 \%$ and $\mathrm{I}, 2 \%$ annual load growth, for all hours of the calculation year)
- A long-term least-cost generation has not been developed for this study
- The study has been performed in hourly time resolution. 5 to 15 min assessment could give more accurate results:
- Especially for wind power plants, better time resolutions (if measurements are available) should be incorporated to better capture ramping requirements.
- Decreasing RES ramps with the geo-spatial diversification of new WPP and SPPs have been ignored in the study.
- Existing per-unit profiles have been used for RES generation.
- It should be noted that existing data (per-unit profile) lacks measurement of RES power plants in distribution level and even some of the RES in transmission level.
- As geo-spatial diversification of the RES may increase, the ramp requirements may be decreased. Individual ramps occur in different times of the day, resulting in less fluctuation in the overall system flexibility balance.
- Potential new capacity investments for conventional generation have been ignored.
- New investments for the power plants with conventional resources (hydro, thermal, CHPP, NPP) would affect the system flexibility balance. (Only new capacity investments for PSHPP have been considered for 2025 studies)
- NPP maintenance plans for next years have been ignored.
- The hourly generation profile for NPPs have assumed to remain unchanged. Maintenance/outage plans for the NPP units may affect the residual load related calculations.
- Degradation of old generation equipment has been ignored and assumed to work in the given regime and performance for 202 land 2025.
- Power plant units are assumed to sustain their existing performance characteristics in terms of ramping in the following years.

6.4. OTHER OBSERVATIONS

- RES Forecasting:

- As observed in the data provided by Ukrenergo that shows the difference between the forecasted wind/solar hourly generation and realization; there is not a reliable forecasting process for RES. The difference between forecast values and realization are dramatically high. This may impact a proper daily planning for the dispatchable generation.
- It should be noted that, forecast accuracy has major impact on grid integration of renewable energy sources. The effectiveness of RES integration and the control reserves necessary for accommodating stochastic generation profiles is a function of RES forecast accuracy.
- Also, a lack of RES curtailment management system is noted for Ukrenergo's operation, for which there is on-going work within the TSO to initiate the system.
- Hourly Telemetry: The following are the observations about remote measurement of load and generation:
- Wind and solar power plants that are connected to distribution level are not remotely monitored for their hourly measurements.
- There are problems with the hourly measurements of some of the RES power plants that are connected to the transmission network as well.
- The hourly load data is not the result of measurement, rather it is the difference between the measured generation and the cross-border exchanges. This creates a gap between the real load and estimated load.
- Increasing situational awareness with implementation of telemetry in the substations of Ukrenergo (and other load substations) will help better RES forecasting and proper management of flexibility in the system.

7. APPENDIX - ILLUSTRATIONS FOR ANALYSES RESULTS

In this part, the following illustrations are presented for all scenarios.

- Load and Residual Load Duration Curves
- Probabilistic Distribution of (I-RL\%) in \% of Load
- Probabilistic Distribution of RES Ramp Ratio in \% of Load
- Chromatic Illustration of RL in \% of Load
- Daily Profiles - As-Is and Selected Scenarios for 202 I and 2025

7.I. DETAILED RESULTS OF LOAD AND RESIDUAL LOAD DURATION CURVES

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,585MW SPP=6,24IMW NPP=I0\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,585MW SPP=6,24IMW NPP=15\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,000MW SPP=7,000MW NPP=10\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,000MW SPP=7,000MW NPP=15\% Reduction Interconnected

Scenario: Year 2021, Annual Load Growth 0.0\%, WPP=I,500MW SPP=5,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=I,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,000MW SPP=6,000MW Interconnected

Scenario: Year 2021, Annual Load Growth 0.0\%, WPP=1,500MW SPP=7,000MW Interconnected

Scenario: Year 2021, Annual Load Growth 0.0\%, WPP=2,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,500MW SPP=7,000MW Interconnected

Scenario: Year 2021, Annual Load Growth 0.0\%, WPP=2,000MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,500MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,000MW SPP=8,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,585MW SPP=6,24IMW NPP=7.5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,585MW SPP=6,24IMW NPP=12.5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=7,000MW NPP=7.5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=7,000MW NPP=12.5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=I,500MW SPP=5,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=1,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=1,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,500MW SPP=6,000MW Interconnected

Scenario: Year 2021, Annual Load Growth 0.5\%, WPP=2,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,500MW SPP=7,500MW Interconnected

Scenario: Year 2021, Annual Load Growth 0.5\%, WPP=2,000MW SPP=8,000MW Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=2,585MW SPP=6,24IMW NPP=5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,585MW SPP=6,24IMW NPP=10\% Reduction Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=2,000MW SPP=7,000MW NPP=5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,000MW SPP=7,000MW NPP=10\% Reduction Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=I,500MW SPP=5,000MW Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=I,500MW SPP=6,000MW Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=2,000MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=I,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,000MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,500MW SPP=7,500MW Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=2,000MW SPP=8,000MW Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=2,500 SPP=7,500 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=3,000 SPP=9,500 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5%, WPP=7,500 SPP=12,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=2,000 SPP=8,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=3,500 SPP=9,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5%, WPP $=4,000$ SPP $=10,000$ Interconnected

Scenario: Year 2025, Annual Load Growth 0.5%, WPP=5,000 SPP $=10,000$ Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=4,000 SPP=12,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=4,500 SPP=12,500 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=5,000 SPP=13,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=2,500 SPP=7,500 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=3,000 SPP=9,500 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=7,500 SPP=12,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=2,000 SPP=8,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=3,500 SPP=9,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,000 SPP=10,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=5,000 SPP=10,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,000 SPP=12,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,500 SPP=12,500 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=5,000 SPP=13,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=2,500 SPP=7,500 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=3,000 SPP=9,500 Isolated

Scenario: Year 2025, Annual Load Growth 0.5%, WPP=7,500 SPP=12,000 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=2,000 SPP=8,000 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=3,500 SPP=9,000 Isolated

Scenario: Year 2025, Annual Load Growth $0.5 \%, W P P=4,000 \mathrm{SPP}=10,000$ Isolated

Scenario: Year 2025, Annual Load Growth 0.5%, WPP=5,000 SPP=10,000 Isolated

Scenario: Year 2025, Annual Load Growth 0.5%,WPP $=4,000$ SPP $=12,000$ Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=4,500 SPP=12,500 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=5,000 SPP=|3,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=2,500 SPP=7,500 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=3,000 SPP=9,500 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=7,500 SPP=12,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=2,000 SPP=8,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=3,500 SPP=9,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,000 SPP=10,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=5,000 SPP=10,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,000 SPP=12,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,500 SPP=12,500 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=5,000 SPP=13,000 Isolated

7.2. DETAILED RESULTS OF PROBABILISTIC DISTRIBUTION OF (I-RL\%) IN \% OF LOAD

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,585MW SPP=6,24IMW NPP=I0\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,585MW SPP=6,24IMW NPP=15\% Reduction Interconnected

Scenario: Year 2021, Annual Load Growth 0.0\%, WPP=2,000MW SPP=7,000MW NPP=10\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,000MW SPP=7,000MW NPP=15\% Reduction Interconnected

Scenario: Year 2021, Annual Load Growth 0.0\%, WPP=1,500MW SPP=5,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=I,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,000MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=I,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,000MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,500MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,000MW SPP=8,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,585MW SPP=6,24IMW NPP=7.5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,585MW SPP=6,24IMW NPP=12.5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=7,000MW NPP=7.5\% Reduction Interconnected

Scenario: Year 2021, Annual Load Growth 0.5\%, WPP=2,000MW SPP=7,000MW NPP=12.5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=I,500MW SPP=5,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=1,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=I,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,500MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=8,000MW Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=2,585MW SPP=6,24IMW NPP=5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,585MW SPP=6,24IMW NPP=10\% Reduction Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=2,000MW SPP=7,000MW NPP=5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,000MW SPP=7,000MW NPP=10\% Reduction Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=I,500MW SPP=5,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=I,500MW SPP=6,000MW Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=2,000MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=I,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,000MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,500MW SPP=7,500MW Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=2,000MW SPP=8,000MW Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=2,500 SPP=7,500 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=3,000 SPP=9,500 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=7,500 SPP=|2,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=2,000 SPP=8,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=3,500 SPP=9,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5%, WPP $=4,000$ SPP $=10,000$ Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=5,000 SPP=10,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=4,000 SPP=12,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=4,500 SPP=12,500 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=5,000 SPP=13,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=2,500 SPP=7,500 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=3,000 SPP=9,500 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=7,500 SPP=|2,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=2,000 SPP=8,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=3,500 SPP=9,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,000 SPP=10,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=5,000 SPP=10,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,000 SPP=12,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,500 SPP=|2,500 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=5,000 SPP=13,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=2,500 SPP=7,500 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=3,000 SPP=9,500 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=7,500 SPP=12,000 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=2,000 SPP=8,000 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=3,500 SPP=9,000 Isolated

Scenario: Year 2025, Annual Load Growth 0.5%, WPP $=4,000$ SPP $=10,000$ Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=5,000 SPP=10,000 Isolated

Scenario: Year 2025, Annual Load Growth 0.5%, WPP $=4,000$ SPP $=12,000$ Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=4,500 SPP=12,500 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=5,000 SPP=|3,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=2,500 SPP=7,500 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=3,000 SPP=9,500 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=7,500 SPP=12,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=2,000 SPP=8,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=3,500 SPP=9,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,000 SPP=10,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=5,000 SPP=10,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,000 SPP=|2,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,500 SPP=12,500 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=5,000 SPP=13,000 Isolated

7.3. DETAILED RESULTS OF PROBABILISTIC DISTRIBUTION OF RES RAMP RATIO IN \% OF LOAD

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,585MW SPP=6,24IMW NPP=10\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,585MW SPP=6,24IMW NPP=15\% Reduction Interconnected

Scenario: Year 2021, Annual Load Growth 0.0\%, WPP=2,000MW SPP=7,000MW NPP=10\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,000MW SPP=7,000MW NPP=15\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=1,500MW SPP=5,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=I,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,000MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=I,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,000MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,500MW SPP=7,500MW Interconnected

Scenario: Year 2021, Annual Load Growth 0.0\%, WPP=2,000MW SPP=8,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,585MW SPP=6,24IMW NPP=7.5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,585MW SPP=6,24IMW NPP=12.5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=7,000MW NPP=7.5\% Reduction Interconnected

Scenario: Year 2021, Annual Load Growth 0.5\%, WPP=2,000MW SPP=7,000MW NPP=12.5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=I,500MW SPP=5,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=1,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=I,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,500MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=8,000MW Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=2,585MW SPP=6,24IMW NPP=5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,585MW SPP=6,24IMW NPP=10\% Reduction Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=2,000MW SPP=7,000MW NPP=5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,000MW SPP=7,000MW NPP=10\% Reduction Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=I,500MW SPP=5,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=I,500MW SPP=6,000MW Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=2,000MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=I,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,000MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,500MW SPP=7,500MW Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=2,000MW SPP=8,000MW Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=2,500 SPP=7,500 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=3,000 SPP=9,500 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=7,500 SPP=12,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=2,000 SPP=8,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=3,500 SPP=9,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5%, WPP $=4,000$ SPP $=10,000$ Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=5,000 SPP=10,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=4,000 SPP=12,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=4,500 SPP=12,500 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=5,000 SPP=13,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=2,500 SPP=7,500 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=3,000 SPP=9,500 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=7,500 SPP=12,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=2,000 SPP=8,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=3,500 SPP=9,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,000 SPP=10,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=5,000 SPP=10,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,000 SPP=12,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,500 SPP=12,500 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=5,000 SPP=13,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=2,500 SPP=7,500 Isolated

Scenario: Year 2025, Annual Load Growth 0.5%, WPP=3,000 SPP=9,500 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=7,500 SPP=12,000 Isolated

Scenario: Year 2025, Annual Load Growth 0.5%, WPP=2,000 SPP=8,000 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=3,500 SPP=9,000 Isolated

Scenario: Year 2025, Annual Load Growth $0.5 \%, W P P=4,000 \mathrm{SPP}=10,000$ Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=5,000 SPP=10,000 Isolated

Scenario: Year 2025, Annual Load Growth $0.5 \%, W P P=4,000 \mathrm{SPP}=12,000$ Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=4,500 SPP=12,500 Isolated

Scenario: Year 2025, Annual Load Growth 0.5%, WPP $=5,000$ SPP $=13,000$ Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=2,500 SPP=7,500 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=3,000 SPP=9,500 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=7,500 SPP=12,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=2,000 SPP=8,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=3,500 SPP=9,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,000 SPP=10,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=5,000 SPP=10,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,000 SPP=12,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,500 SPP=|2,500 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=5,000 SPP=|3,000 Isolated

7.4. DETAILED RESULTS OF CHROMATIC ILLUSTRATION OF RL IN \% OF LOAD

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,585MW SPP=6,24IMW NPP=10\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,585MW SPP=6,24IMW NPP=15\% Reduction Interconnected

Scenario: Year 2021, Annual Load Growth 0.0\%, WPP=2,000MW SPP=7,000MW NPP=10\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,000MW SPP=7,000MW NPP=15\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=1,500MW SPP=5,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=I,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,000MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=I,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,000MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,500MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.0\%, WPP=2,000MW SPP=8,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,585MW SPP=6,24IMW NPP=7.5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,585MW SPP=6,24IMW NPP=12.5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=7,000MW NPP=7.5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=7,000MW NPP=12.5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=I,500MW SPP=5,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=1,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=1,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,500MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth 0.5\%, WPP=2,000MW SPP=8,000MW Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=2,585MW SPP=6,24IMW NPP=5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,585MW SPP=6,24IMW NPP=10\% Reduction Interconnected

Scenario: Year 2021, Annual Load Growth I.0\%, WPP=2,000MW SPP=7,000MW NPP=5\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,000MW SPP=7,000MW NPP=10\% Reduction Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=1,500MW SPP=5,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=I,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,000MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=I,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,500MW SPP=6,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,500MW SPP=7,000MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,000MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,500MW SPP=7,500MW Interconnected

Scenario: Year 202I, Annual Load Growth I.0\%, WPP=2,000MW SPP=8,000MW Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=2,500 SPP=7,500 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=3,000 SPP=9,500 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=7,500 SPP=12,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=2,000 SPP=8,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=3,500 SPP=9,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5%, WPP $=4,000$ SPP $=10,000$ Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=5,000 SPP=10,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=4,000 SPP=12,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=4,500 SPP=|2,500 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=5,000 SPP=|3,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=2,500 SPP=7,500 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=3,000 SPP=9,500 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=7,500 SPP=12,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=2,000 SPP=8,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=3,500 SPP=9,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,000 SPP=10,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=5,000 SPP=10,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,000 SPP=12,000 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,500 SPP=12,500 Interconnected

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=5,000 SPP=13,000 Interconnected

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=2,500 SPP=7,500 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=3,000 SPP=9,500 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=7,500 SPP=12,000 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=2,000 SPP=8,000 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=3,500 SPP=9,000 Isolated

Scenario: Year 2025, Annual Load Growth $0.5 \%, W P P=4,000 \mathrm{SPP}=10,000$ Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=5,000 SPP=10,000 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=4,000 SPP=12,000 Isolated

Scenario: Year 2025, Annual Load Growth 0.5\%, WPP=4,500 SPP=12,500 Isolated

Scenario: Year 2025, Annual Load Growth 0.5%, WPP=5,000 SPP $=\mid 3,000$ Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=2,500 SPP=7,500 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=3,000 SPP=9,500 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=7,500 SPP=12,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=2,000 SPP=8,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=3,500 SPP=9,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,000 SPP=10,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=5,000 SPP=10,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,000 SPP=12,000 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=4,500 SPP=12,500 Isolated

Scenario: Year 2025, Annual Load Growth I.2\%, WPP=5,000 SPP=|3,000 Isolated

Figure 3: Day with Max HPP, May 24th: As-Is

Figure 4: May 24th: Scenario: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

May 24th Scenario: 2021, 0,5\% Yearly Growth, Interconnected, 624IMW Solar, 2585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction										
	24,052019	NPP	Ofp	Wind	Solar	Run-of. Biver	Hepro	TPP	$\begin{aligned} & \text { Psspp } \\ & \text { Gmen } \end{aligned}$	Lead + Intercan. + EFtad logd
	00000	8026	521	551	0	60	1294	3566	0	14056
	01:00	8023	525	569	0	55	1349	3064	0	13539
18050 24.May - Maximum HPP Gen. Day	ω coso	8012	524	355	0	52	1510	3157	0	13587
	ce:00	8031	518	142	0	54	1644	3149	0	13493
16050	04:00	8019	527	145	0	54	1639	3168	0	13555
-	cs:00	8029	529	75	71	54	1358	2960	0	13042
	06.00	8016	524	38	233	55	1274	2981	0	13052
-T\%	07:00	8039	525	56	563	56	1575	3556	0	14424
12050	cesol	8020	528	21	1402	58	960	3969	0	15026
	06:00	8009	522	4	2080	59	460	3993	0	15140
10050	10:00	8017	525	12	2929	60	376	3628	0	15551
-str	11:00	8014	512	30	3323	60	190	3217	0	15415
8050	12:00	7984	506	97	3482	60	190	3346	0	15666
	13:00	7977	509	151	3320	60	299	3357	0	15758
6000 -om	14:00	7974	508	109	3017	60	488	3591	0	15790
	15:00	8005	508	270	2454	60	602	3840	0	15577
	16:00	8010	514	295	2123	60	306	3855	1040	16243
Ens sher	17:00	8003	513	341	1513	60	855	3858	1037	16273
2000	18:00	7964	513	238	1170	60	1348	3834	1037	16257
	19:00	7974	513	158	445	60	1914	3817	1043	16005
-	20:00	7955	514	95	54	60	1930	3823	1208	15666
-0,	21:00	7966	537	71	17	59	1930	4079	1208	15935
	22:00	7949	524	137	10	60	1888	3953	1208	15802
	23:00	7960	519	144	0	60	1849	4057	0	14613
										3

Figure 5: May 24th: Scenario: 202I, 0,5\% Yearly Growth, Interconnected, 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

May 24th: Scenario: $2021,0,5 \%$ Yearly Growth, Isolated, 6241 MW Solar, 2585 MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction										
	2405.2019	NPP	OHPP	wnd	Solar	Run-of: River	Hpdro	TPP	$\begin{aligned} & \text { PSHPP } \\ & \text { Gen } \end{aligned}$	Load + Intercon. - Forkidgod
	00.00	8026	521	551	0	60	1214	3566	0	13993
18050 24May - Maximum HPP Gen. Day	01:00	8023	525	569	0	55	1118	3064	0	13332
	00.00	8012	524	355	0	52	1247	3157	0	13380
	03:00	8031	518	142	0	54	1550	3149	0	13448
16000	04:00	8019	527	145	0	54	1557	3168	0	13454
	06:00	8029	529	75	71	54	1389	2960	0	13111
	$06: 00$	8016	524	38	233	55	1167	2981	0	12985
	07:00	8039	525	56	563	56	1454	3556	0	14305
12000	ces:00	8020	528	21	1402	58	954	3969	0	15040
	0e.00	8009	522	4	2080	59	524	3993	0	15278
10050	10.00	8017	525	12	2929	60	220	3628	0	15506
- sar	11:00	8014	512	30	3323	60	190	3044	0	15280
8050	12:00	7984	506	97	3482	60	190	3036	0	15466
	13:00	7977	509	151	3320	60	190	3300	0	15601
6050	14:00	7974	508	109	3017	60	403	3591	0	15729
ninde	15:00	8005	508	270	2454	60	441	3840	0	15509
4050 -	16:00	8010	514	295	2123	60	331	3855	1040	16361
Lex. AnAm	17:00	8003	513	341	1513	60	676	3858	1037	16164
2050	18:00	7964	513	238	1170	60	1248	3834	1037	16215
	19:00	7974	513	158	445	60	1874	3817	1043	16059
	20.00	7955	514	95	54	60	1866	3823	1208	15704
	21:00	7966	537	71	17	59	1901	3951	1208	15815
	22:00	7949	524	137	10	60	1888	3950	1208	15915
	23:00	7960	519	144	0	60	1849	4028	0	14640

Figure 6: May 24th: Scenario: 202 I, 0,5\% Yearly Growth, Isolated, 6,24I MW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Figure 7: May 24th: Scenario: 2025, I,2\% Yearly Growth, Interconnected, 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Figure 8: May 24th: Scenario: 2025, I,2\% Yearly Growth, Interconnected, 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction

May 24th: Scenario: 2025, 1,2\% Yearly Growth, Interconnected, I2000MW Solar, 7500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

	2405.2019	NP	OHPP	wind	Solar	Run-of Fiver	Hpdro	TTP	$\begin{aligned} & \text { PSAPD } \\ & \text { Cem. } \end{aligned}$	Load + Intericon. + Prigelond
	00.00	4339	417	1598	0	60	1689	6781	0	14921
	02:00	4337	420	1651	0	55	1719	6211	0	14346
18050 24May - Maximum HPP Gen. Day	02:00	4331	419	1029	0	52	1720	6836	0	14.365
	caso	4341	414	412	0	54	1710	7366	0	14251
15050	04:00	4335	422	421	0	54	1709	7371	0	14315
	Ofico	4340	423	217	136	54	1599	7070	0	13806
14000 -rovas	06.00	4333	419	110	447	55	1597	6974	0	13867
T\%	0700	4346	420	162	1082	56	1802	7396	0	15318
12050	cesoo	4335	422	60	2696	58	1780	6544	0	15964
	cesoo	4329	418	12	3999	59	1766	5497	0	16091
10050 - -lodem	10:00	4334	420	35	5632	60	1964	4067	0	16516
-nar	11:00	4332	410	86	6390	60	1470	3551	0	16368
8050	12:00	4316	405	281	6695	60	1510	3361	0	16629
-	13:00	4312	407	438	6384	60	1688	3357	0	16732
6050 - - - 000	14:00	4310	406	317	5800	60	2060	3777	0	16774
-	15:00	4327	406	784	4718	60	1998	4423	0	16555
4050	16:00	4330	411	857	4083	60	1692	3855	1371	16699
Ninnm	17:00	4326	410	989	2910	60	1863	4500	1366	16517
2000	18:00	4305	410	691	2249	60	1931	5398	1366	16503
	19:00	4311	410	459	855	60	2038	6942	1375	16530
\cdots	20:00	4300	411	275	104	60	2011	7646	1532	16365
8 -	21:00	4306	430	205	32	59	1930	8358	1532	16920
	22:00	4297	419	398	19	60	1888	8101	1532	16787
	23:00	4303	415	418	0	60	1849	8458	0	15527

Figure 9: May 24th: Scenario: 2025, I,2\% Yearly Growth, Interconnected, I2,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

Luly 10 ${ }^{\text {ch }}$ SummerWednesday: As-ls										
	1007.2019	N0p	OHPP	mind	Solar	Run-of: Ever	Hpdro	TTP	$\begin{aligned} & \text { PSHPP } \\ & \text { Gem } \end{aligned}$	Lead + Intercen. - Fortiplogd
	00.00	8402	440	98	0	23	70	4536	0	12821
10050 10.July - Summer Wednesdry	01:00	8399	444	109	0	22	851	2899	0	11967
	∞ covo	8410	440	120	0	22	75	3003	0	11483
	03:00	8426	455	114	0	22	474	3158	0	11995
16050	04:00	8405	457	113	0	22	201	3413	0	12220
1405012000	0s:00	8399	445	61	21	22	572	3358	0	12089
	06.00	8422	454	40	65	22	70	3136	0	11555
	07:00	8418	465	38	168	22	227	3806	0	12688
	cesol	8431	504	19	429	21	402	3819	0	13276
	Oe.co	8394	529	22	686	41	416	4700	0	14639
10050	10.00	8363	531	27	1002	42	709	4319	0	14824
	11:00	8321	515	23	1186	42	370	4634	0	14860
8050	12:00	8139	522	97	1275	42	938	4055	0	14859
	13:00	7765	522	164	1297	42	832	4570	0	14961
6050	14:00	7662	512	153	1100	42	999	4666	139	15122
	15:00	7415	511	185	970	42	1155	4460	1153	15690
4050	16:00	7434	512	249	786	42	857	4930	1208	15830
	17:00	7429	519	242	666	42	902	4965	1208	15641
2000	18:00	7430	511	282	391	42	1159	4953	1208	15644
	19:00	7416	520	271	211	42	975	5171	1175	15452
	20.00	7412	515	263	40	42	867	5235	1208	15334
	21:00	7419	517	229	0	42	1044	5477	1208	15746
	22:00	7419	531	153	0	42	1244	5670	1208	16114
	23:00	7390	506	95	0	42	819	5582	201	14216

Figure 10: July IOth Summer Wednesday: As-Is

Iuly 10 © S Summer Wednesday: 2021, 0,0\% Yearly Growth, Intercon. 624IMW Solar, 2585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

	1007.2019	N0p	OHPP	wind	Solar	Run-of Fiver	Hepdro	TpP	PSHP Gm.	Load + Intercon. + Frifitiond
	00.00	7562	440	403	0	23	605	4536	0	12821
	02:00	7559	444	448	0	22	1286	2965	0	11967
18000 - 10.july - Summer Wednesday	00.00	7569	440	493	0	22	543	3003	0	11483
	00300	7583	455	469	0	22	962	3158	0	11995
16500	04:00	7565	457	465	0	22	690	3413	0	12220
	Os:00	7559	445	251	59	22	1111	3432	0	12089
14800 -romen	06.00	7580	454	164	181	22	671	3136	0	11555
- -m	07:00	7576	465	156	469	22	650	3806	0	12688
12000	cesol	758 B	504	78	1197	21	418	3819	0	13276
-	cesod	7555	529	90	1914	41	50	4609	0	14639
10000	10.00	7527	531	111	2795	42	50	3937	0	14824
-sir	12:00	7489	515	95	3309	42	50	3592	0	14860
${ }_{8000}^{\square}$	12:00	7325	522	399	3557	42	50	3173	0	14859
Er	13:00	6989	522	674	3618	42	50	3297	0	14961
6000	14:00	6896	512	629	3069	42	50	3936	139	15122
—ne	15:00	6674	511	761	2706	42	50	3995	1153	15690
4000	16.00	6691	512	1024	2193	42	50	4299	1208	15830
——insm	17:00	6686	519	995	1858	42	50	4615	1208	15641
2000	18:00	6687	511	1160	1091	42	324	4953	1208	15644
	19000	6674	520	1114	589	42	495	5171	1175	15452
\cdots -	20:00	6671	515	1082	112	42	718	5235	1208	15334
-	21:00	6677	517	942	0	42	1054	5477	1208	15726
	22:00	6677	531	629	0	42	1323	5670	1208	15927
	23:00	6651	506	391	0	42	1153	5582	201	14107

Figure II: July 10th Summer Wednesday: 202I, 0,0\% Yearly Growth, Intercon. 6,24I MW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Iuly 10 ${ }^{\text {ch }}$ Summer Wednesday; 2021, 0,5\% Yearly Growth, Intercon. 624IMW Solar, 2585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

	1007.2019	Np	Ofp	Wind	Solar	Run-of. Biver	Hpdro	TPP	PSHPT $\mathrm{Gm} \text {. }$	Load \& Intercon. + Pricipod
	00.00	7772	440	403	0	23	530	4536	0	12956
	02:00	7769	444	448	0	22	1266	2899	0	12091
1 1090	ce:00	7779	440	493	0	22	453	3003	0	11604
	caso	7794	455	469	0	22	870	3158	0	12114
16050	04:00	7775	457	465	0	22	599	3413	0	12339
	Of:00	7769	445	251	59	22	1093	3358	0	12208
$14000 \times$-ramen	06.00	7790	454	164	181	22	584	3136	0	11678
- -m	0700	7787	465	156	469	22	573	3806	0	12822
12050	cesido	7799	504	78	1197	21	347	3819	0	13416
-4so	Oe.00	7764	529	90	1914	41	50	4548	0	14788
10050 - -ratem	10.00	7736	531	111	2795	42	50	3879	0	14975
-sar	12:00	7697	515	95	3309	42	50	3537	0	15014
8050	12:00	7529	522	399	3557	42	50	3122	0	15012
	13:00	7183	522	674	3618	42	50	3254	0	15112
6050	14:00	7087	512	629	3069	42	50	3898	139	15275
-	15:00	6859	511	761	2706	42	50	3961	1153	15842
4050	16:00	6876	512	1024	2193	42	50	4264	1208	15981
Eltome	17:00	6872	519	995	1858	42	50	4579	1208	15791
2050	18:00	6873	511	1160	1091	42	289	4953	1208	15793
	19:00	6860	520	1114	589	42	460	5171	1175	15601
\cdots -	20.00	6856	515	1082	112	42	681	5235	1208	15482
	21:00	6863	517	942	0	42	1040	5477	1208	15898
	22:00	6863	531	629	0	42	1315	5670	1208	16104
	23:00	6836	506	391	0	42	1123	5582	201	14262

Figure 12: July IOth Summer Wednesday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Figure I3: July 10th Summer Wednesday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Figure 14: July IOth Summer Wednesday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Luly 10 © Summer Wednesday: 2025, 1,2\% Yearly Growth, Intercon, 9500 MW Solar, 3000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction

	1007.2019	Nap	OHPP	wind	Solar	Run-of. Fiver	Hedro	Tpp	PSiPP Gm.	Lead + Intercen. - Brtediond
	00000	7562	396	468	0	23	796	5321	0	13817
10.ultr Summer Wednendy	01:00	7559	400	520	0	22	1286	3858	0	12888
20000 O. 10.July - Summer We	0×00	7569	396	573	0	22	799	3605	0	12377
	0 caso	7583	410	544	0	22	1049	3919	0	12873
18050	04:00	7565	411	539	0	22	878	4077	0	13101
	$0_{6} 000$	7559	401	291	89	22	1111	4284	0	12968
16050 -romen	06.00	7580	409	191	276	22	796	3849	0	12468
-T*	07,00	7576	419	181	713	22	894	4326	0	13676
14050	ces.00	7588	454	91	1822	21	867	3819	0	14312
12050	OE:00	7555	476	105	2913	41	97	4700	0	15738
- -reater	10000	7527	478	129	4255	42	50	3633	0	15944
10050 -	12:00	7489	464	110	5037	42	50	3037	0	15997
-What	12:00	7325	470	463	5415	42	50	2432	0	15988
${ }^{5050}$	13:00	6989	470	783	5508	42	50	2472	0	16082
$6000 \times$-000	14:00	6896	461	730	4671	42	50	3416	183	16298
2000 -men	15:00	6674	460	883	4119	42	50	3636	1519	17181
	16:00	6691	461	1188	3338	42	50	4161	1532	17274
	17.00	6686	467	1155	2828	42	50	4650	1532	17078
2050	18.00	6687	460	1346	1660	42	730	4953	1532	17077
	19:00	6674	468	1293	896	42	1022	5171	1532	16769
	20.00	6671	464	1255	170	42	1087	5235	1532	16206
+20\%	21:00	6677	465	1093	0	42	1311	5477	1532	16407
	22:00	6677	478	730	0	42	1533	5755	1532	16594
	23:00	6651	455	453	0	42	1266	6427	265	15141

Figure 15: July 10th Summer Wednesday: 2025, 1,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction

Luly 10\% Summer Wednesday: 2025, 1,2\% Yearly Growth, Intercon. 12000MW Solar, 7500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction										
	1007.2009	N0	OPPP	wind	Solar	Run-of. Eiver	Hpdro	TPP	PStip Gm	Load + Intericon. * Frisilog
	0000	4201	352	1169	0	23	796	8024	0	13817
20050 10.July - Summer Wednesday	02:00	4200	355	1301	0	22	1286	6482	0	12898
	$\omega \times 0$	4205	352	1432	0	22	799	6154	0	12377
	c3:00	4213	364	1360	0	22	1049	6519	0	12873
18050	04:00	4203	366	1348	0	22	878	6675	0	13101
	0s:00	4200	356	728	113	22	1111	7228	0	12968
15050	06.00	4211	363	477	349	22	796	6904	0	12468
14050	07:00	4209	372	453	901	22	894	7280	0	13676
	ces:00	4216	403	227	2301	21	1004	6489	0	14312
12050	Oe.00	4197	423	262	3680	41	1013	6271	0	15738
	10.00	4182	425	322	5375	42	1197	4571	0	15944
10050	11:00	4161	412	274	6362	42	343	4634	0	15997
	12:00	4070	418	1157	6839	42	50	3621	0	15988
0×0	13:00	3883	418	1957	6958	42	50	3006	0	16082
	14:00	3831	410	1825	5901	42	50	4207	183	16298
6050	15:00	3708	409	2207	5203	42	50	4244	1519	17181
4050 - -inutatime	16:00	3717	410	2971	4216	42	50	4525	1532	17274
2inn	17:00	3715	415	2887	3573	42	282	4965	1532	17078
2050	18:00	3715	409	3365	2097	42	1188	4953	1532	16969
	19000	3708	416	3233	1132	42	1227	5171	1532	16132
	20.00	3706	412	3138	215	42	1296	5590	1532	15682
	21:00	3710	414	2732	0	42	1407	6476	1532	16122
	22:00	3710	425	1825	0	42	1533	7681	1532	16594
	23:00	3695	405	1133	0	42	1266	8754	265	15141

Figure I6: July IOth Summer Wednesday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

Luly $21^{\text {st }}$ Summer Sunday: As-ls										
	2107.2019	N0p	OHPP	wnd	Solar	Run-of River	Hpdro	TPP	$\begin{aligned} & \text { PSAFP } \\ & \text { Gem } \end{aligned}$	Lead + Intericen. - Erfolgord
	cos.00	8248	457	55	0	20	472	4117	0	13046
18050 21.July - Summeer Sunday	01:00	8247	458	29	0	19	109	3656	0	12202
	0×00	8273	451	62	0	19	160	3463	0	12090
	crico	8247	470	96	0	19	142	3472	0	12055
16050	04:00	8252	468	118	0	19	70	2850	0	11532
	06:00	8265	475	157	20	19	135	3251	0	11913
1405012050	06.00	8245	470	141	59	19	70	2752	0	11366
	07:00	8258	471	130	163	19	70	2734	0	11524
	C8.00	8282	529	60	384	18	70	3302	0	12353
	Cos.00	8227	561	24	661	38	392	3125	0	12719
10050	20.00	8230	552	40	1042	38	668	3175	0	13480
	11:00	8235	558	33	1255	38	793	3056	0	13813
8050	12:00	8195	566	54	1293	39	1082	2794	0	13823
	13:00	8220	563	69	1280	36	1125	2811	0	13995
6050 - -om	14:00	8188	558	77	1133	36	1004	2989	0	13785
4050	15:00	8187	558	74	981	36	1176	2997	0	13843
	16:00	8156	553	68	779	36	1222	3006	0	13619
	17:00	8169	567	55	584	36	1347	3508	0	14046
2050	18:00	8207	571	53	429	36	1278	3567	0	13935
	19000	8191	574	41	160	36	1519	3760	0	14060
	20:00	8163	572	120	35	36	986	3988	1208	14844
	21:00	8200	571	133	2	36	1468	4047	1208	15558
	22:00	8188	575	145	0	38	1985	4005	1208	15932
	23:00	8229	577	327	0	38	646	3850	1208	14597

Figure I7: July 2 Ist Summer Sunday: As-Is

Iuly $21^{\text {st }}$ Summer Sunday: 202I, 0,0\% Yearly Growth, Intercon. 624 IMW Solar, 2585MWWind, 10\% NPP Reduction, 0\% CHPP Reduction

	2107.2019	Nap	OHPP	Whnd	Solar	Run-of Eviver	Hpdro	TPP	$\begin{gathered} \text { Pstrp } \\ \text { Gsm. } \end{gathered}$	Load + Intercen - Prificlogd
	00000	7423	457	226	0	20	1081	4161	0	13046
214ly. Suma	01:00	7422	458	119	0	19	843	3656	0	12202
18000 (${ }^{\text {a }}$	0,000	7446	451	255	0	19	794	3463	0	12090
	cravo	7422	470	395	0	19	668	3472	0	12055
16000	04:00	7427	468	485	0	19	528	2850	0	11532
	Csido	7439	475	646	56	19	437	3251	0	11913
14000 -romen	06.00	7421	470	580	165	19	350	2752	0	11366
-m	07:00	7432	471	535	455	19	199	2734	0	11524
12000	cesol	7454	529	247	1071	18	50	3276	0	12353
	cesod	7404	561	99	1844	38	50	3032	0	12719
10000 - -hedem	10.00	7407	552	164	2907	38	50	2626	0	13480
-som	11:00	7412	558	136	3501	38	50	2273	0	13813
8000	12:00	7376	566	222	3607	39	50	2163	0	13823
	13:00	7398	563	284	3571	36	50	2202	0	13995
6000	14:00	7369	558	317	3161	36	50	2494	0	13785
-	15:00	7368	558	304	2737	36	50	2956	0	13843
4000	16:00	7340	553	280	2173	36	432	3006	0	13619
	17:00	7352	567	226	1629	36	947	3508	0	14046
2000	18.00	7386	571	218	1197	36	1166	3567	0	13935
	1900	7372	574	169	446	36	1716	3968	0	14060
	20000	7347	572	493	98	36	1120	3888	1208	14597
8 - 人)	20:00	7380	571	547	6	36	1559	4047	1208	15246
	22:00	7369	575	596	0	38	1992	4005	1208	15571
	23:00	7406	577	1345	0	38	451	3850	1208	14597

Figure I8: July 2 Ist Summer Sunday: 202 I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, I 0\% NPP Reduction, 0\% CHPP Reduction

Luly $21^{\text {st }}$ Summer Sunday: 2021, 0,5\% Yearly Growth, Intercon. 624IMW Solar, 2585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

	2107×109	N0	arp	wnd	Solar	Runot	mpdo	Tp	Pstw	Lead + Intercan
	0000	7629	457	226	0	20	1055	4117	0	13182
	01:00	7628	458	119	0	19	765	3656	0	12330
180000	00.00	7653	451	255	0	19	708	3463	0	12210
	0300	7628	470	395	0	19	581	3472	0	12174
16000	04,00	7633	468	485	0	19	440	2850	0	11650
	cs,00	7645	475	645	56	19	348	3251	0	12031
14000	0600	7627	470	580	165	19	264	2752	0	11486
-"	or.00	7639	471	535	455	19	117	2734	0	11648
12000	ce.00	7661	529	247	1071	18	50	3198	0	12482
+	Comb	7610	561	99	1844	38	50	2963	0	12856
10000 - -	10000	7613	552	164	2907	38	50	2563	0	13622
-m	11:00	7617	558	136	3501	38	50	2211	0	13956
${ }^{8000}$ -	12.00	7580	566	222	3607	39	50	2102	0	13967
	13.00	7604	563	284	3571	36	50	2140	0	14138
6000	14.50	7574	558	317	3161	36	50	2433	0	13928
-	15:00	7573	558	304	2737	36	50	2893	0	13985
4000	18.00	7544	553	280	2173	36	371	3006	0	13762
-imm	17:00	7556	567	226	1629	36	888	3508	0	14191
2000	18.00	7591	571	218	1197	36	1106	3567	0	14081
	19.00	7577	574	169	446	36	1716	3909	0	14205
	20.00	7551	572	493	98	36	1099	3888	1208	14781
	21:00	7585	571	547	6	36	1546	4047	1208	15438
	2200	7574	575	596	0	38	1991	4005	1208	15775
	23:00	7612	577	1345	0	38	389	3850	1208	14740

Figure 19: July 2 I st Summer Sunday: 202 I, 0,5\% Yearly Growth, Intercon. 6,24 I MW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Iuly $21^{\text {st }}$ Summer Sunday: 2021, 0,5\% Yearly Growth, Iso 624 IMW Solar, 2585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Figure 20: July 2 Ist Summer Sunday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Luly $21^{\text {se }}$ Summer Sunday：2025，1，2\％Yearly Growth，Intercon． 7500 MW Solar，2500MW Wind，10\％NPP Reduction，0\％CHPP Reduction

	2107．2019	N0	OHPP	wnd	Solar	Run－of． Rever	Hpdro	Tpp	$\begin{aligned} & \text { Pstrp } \\ & \text { Gsm } \end{aligned}$	Lead＋Intercon． + Pripelogd
	cou00	7423	457	219	0	20	1081	5174	0	14052
	01：00	7422	458	115	0	19	861	4589	0	13149
18050 elor	02．00	7446	451	247	0	19	892	4265	0	12982
	03：00	7422	470	382	0	19	881	4154	0	12938
16050	04：00	7427	468	469	0	19	838	3429	0	12405
	Os：00	7439	475	624	67	19	877	3692	0	12784
14000 －rmencon	O6：00	7421	470	561	198	19	838	3140	0	12255
－To	07：00	7432	471	517	546	19	838	2942	0	12444
12000	cesma	7454	529	239	1287	18	769	3302	0	13306
	OE：00	7404	561	95	2216	38	599	3125	0	13729
10050	10：00	7407	552	159	3494	38	50	3098	0	14533
atr	12：00	7412	558	131	4208	38	50	2631	0	14873
3050	12：00	7376	566	215	4335	39	50	2509	0	14899
	13：00	7398	563	274	4291	36	50	2552	0	15056
6050	14：00	7369	558	306	3799	36	50	2926	0	14844
－	15：00	7368	558	294	3289	36	520	2997	0	14896
4050	16：00	7340	553	270	2612	36	1061	3006	0	14677
5	17：00	7352	567	219	1958	36	1612	3592	0	15116
2000	18：00	7386	571	211	1438	36	1570	4007	0	15013
	19：00	7372	574	163	536	36	1716	4960	0	15136
	20.00	7347	572	477	117	36	1386	3888	1532	15191
－\％\％\％	21：00	7380	571	529	7	36	1685	4293	1532	15925
	22：00	7369	575	577	0	38	1998	4487	1532	16364
	23：00	7406	577	1301	0	38	927	3850	1532	15352

Figure 2I：July 2 Ist Summer Sunday：2025，I，2\％Yearly Growth，Intercon．7，500MW Solar，2，500MW Wind， 10\％NPP Reduction，0\％CHPP Reduction

Iuly $21^{\text {st }}$ Summer Sunday：2025，1，2\％Yearly Growth，Intercon． 9500 MW Solar，3000MWWind，10\％NPP Reduction，10\％CHPP Reduction

	2107.2099	Nop	OPP	Wind	Solar	Runot Enser	npro	Tp	Patw	Lead＋Intercan ＋BSt？P Jond
	0000	7423	411	262	0	20	1081	5176	0	14052
	01．00	7422	412	138	0	19	861	4612	0	13149
180000	¢0．00	7446	406	296	0	19	892	4261	0	12982
	casp	7422	423	458	－	19	881	4125	0	12938
16050	04：00	7427	421	563	0	19	838	3382	0	12405
	Cf：00	7439	428	749	85	19	877	3596	0	12784
mercan	0500	7421	423	673	251	19	838	3022	0	12255
－${ }^{\text {m }}$	0700	7432	424	620	692	19	838	2740	0	12444
12080	cesom	7454	476	286	1631	18	431	3302	0	13306
	0800	7404	505	115	2807	38	50	3120	0	13729
10000 －－rater	12000	7407	497	191	4425	38	50	2190	0	14533
－	11：00	7412	502	157	5330	38	50	1539	0	14873
8000 －－wat	12：00	7376	509	258	5491	39	50	1366	0	14889
	13：00	7398	507	329	5436	36	50	1409	0	15056
6000	14.00	7369	502	367	4812	36	50	1907	0	14844
－＂	15：00	7368	502	353	4166	36	50	2586	0	14896
	16.00	7340	498	325	3308	36	365	3006	0	14677
一昰药	17．00	7352	510	262	2480	${ }^{36}$	1187	3508	0	15116
2005	18．00	7386	514	253	1822	36	1570	3639	0	15013
	19.00	7372	517	196	679	36	1716	4842	0	15136
	20.00	7347	515	573	149	36	1367	3888	1532	15241
	21：00	7380	514	635	8	36	1685	4243	1532	15925
	2200	7369	518	692	0	38	1998	4429	1532	16364
	23：00	7406	519	1561	0	38	865	3850	1532	15492

Figure 22：July 2 Ist Summer Sunday：2025，I，2\％Yearly Growth，Intercon．9，500MW Solar，3，000MW Wind， 10\％NPP Reduction，I0\％CHPP Reduction

Iuly $21^{\text {st }}$ Summer Sunday: 2025, I,2\% Yearly Growth, Intercon, I2000MW Solar, 7500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

	2107.2019	N0	OHPP	wnd	Solar	Run-ot. Fiver	Hpdro	TTP	$\begin{aligned} & \text { PSIPP } \\ & \text { Gm. } \end{aligned}$	Load + Intaricon. + Erifelgod
	00.00	4124	366	656	0	20	1081	8127	0	14052
	02:00	4124	366	346	0	19	861	7749	0	13149
18050 - 21.July - Summer Sundzy	0×100	4137	361	740	0	19	892	7171	0	12982
	03:00	4124	376	1145	0	19	881	6783	0	12938
16050	04:00	4126	374	1408	0	19	838	5885	0	12405
\square	Os:00	4133	380	1873	107	19	877	5804	0	12784
	06.00	4123	376	1682	316	19	838	5291	0	12255
- ${ }^{\prime \prime}$	0700	4129	377	1551	874	19	838	4977	0	12444
12000	cesido	4141	423	716	2060	18	838	5402	0	13306
-40	Cesion	4114	449	286	3546	38	1033	4573	0	13729
10050	10.00	4115	442	477	5590	38	962	3175	0	14533
-sar	12:00	4118	446	394	6732	38	244	3056	0	14873
8050	12:00	4098	453	644	6936	39	125	2794	0	14889
	13:00	4110	450	823	6866	36	68	2811	0	15056
6000 =omm	14:00	4094	446	919	6078	36	482	2989	0	14844
-	15:00	4094	446	883	5262	36	1344	2997	0	14896
	16:00	4078	442	811	4179	36	1536	3796	0	14677
$\text { home } 4 \text { irlif }$	17:00	4085	454	656	3133	36	1612	5361	0	15116
2000	18.00	4104	457	632	2301	36	1570	6120	0	15013
	19:00	4096	459	489	858	36	1716	7703	0	15136
\cdots	20.00	4082	458	1432	188	36	1393	6218	1532	15173
+0\% + +	21:00	4100	457	1587	11	36	1685	6626	1532	15925
	22:00	4094	460	1730	0	38	1998	6724	1532	16364
	23:00	4115	462	3902	0	38	1177	3850	1532	14796

Figure 23: July 2 I st Summer Sunday: 2025, I,2\% Yearly Growth, Intercon. I 2,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

Luly $27^{\text {th }}$ Summer Saturday: As-Is										
	27072099	Nop	Ofp	mind	solar	Rumot	Hpro	Tp	pestop	Lead + Intrurcan + Brive lond
	coso	8229	452	152	0	24	198	4371	0	13019
H-Summer Soturdy	01:00	8247	459	139	0	22	206	3698	0	12359
100000	co.00	8231	444	145	0	23	361	3671	0	12468
	03.00	8242	447	131	0	23	204	3690	0	12304
16050 -	04.00	8220	455	150	0	23	72	3425	0	11796
0	06.00	8240	456	122	19	23	205	3604	0	12195
14000 -romen	0600	8231	455	69	54	23	73	3204	0	11643
-"	07,00	${ }^{8240}$	460	37	154	23	72	3257	0	11656
12000	ceso	8251	516	6	394	22	193	3883	0	12722
-	0800	8246	545	14	690	42	645	4175	0	14039
10000 - -rodem	1000	8245	542	56	1050	42	608	3868	0	13838
-s	11:00	8224	548	51	1215	42	884	3853	0	14377
${ }^{8000}$ - -wo	12:00	8206	539	84	1261	43	754	3825	0	14194
	13:00	8208	547	108	1147	40	975	3853	0	14258
6000	19:000	8203	547	113	1042	40	798	4251	0	14354
-	15:00	8175	543	111	1022	40	688	4184	0	14133
4000	1600	8163	544	101	804	40	918	4134	0	14117
	17.00	8158	545	108	602	40	834	4260	0	13868
2050	1800	8181	540	80	389	40	1125	4480	0	14291
	19.00	8155	545	110	149	40	1152	4591	0	14081
\cdots	20.00	8172	566	130	31	40	830	4850	1208	15271
	22:00	8173	565	68	0	40	1497	4851	1208	15768
	2200	8146	558	99	0	42	1254	4883	1208	15583
	23:00	8169	539	68	0	42	775	4742	0	13762

Figure 24: July 27th Summer Saturday: As-Is

Luly $27^{\text {th }}$ Summer Saturday: 2021, 0,0\% Yearly Growth, Intercon. 624 IMW Solar, 2585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

	23.07.2019	NPP	OPp	wnd	Solar	Runot. Eher	Hydro	TTP	PSHP Gen.	Load + Intercon. + Prizelond
	00.00	7406	452	625	0	24	548	4371	0	13019
	01:00	7422	459	572	0	22	598	3698	0	12359
18000	0200	7408	444	596	0	23	733	3671	0	12468
	cravo	7418	447	539	0	23	620	3690	0	12304
16600	04:00	7398	455	617	0	23	427	3425	0	11796
\square	Of.00	7416	456	502	53	23	615	3604	0	12195
$14000 \times$-rome	06.00	7408	455	284	151	23	585	3204	0	11643
-	07:00	7416	460	152	430	23	505	3257	0	11656
$12000 \sim$	cesm	7426	516	25	1099	22	294	3883	0	12722
-	Oe.co	7421	545	58	1925	42	191	4175	0	14039
10000 - - enew	10:00	7421	542	230	2929	42	50	3197	0	13838
-sar	11:00	7402	548	210	3390	42	50	3176	0	14377
${ }^{8000}$ - - - wad	12:00	7385	539	345	3518	43	50	2831	0	14194
-wad	13:00	7387	547	444	3200	40	50	3210	0	14258
6000	14:00	7383	547	465	2907	40	50	3603	0	14354
—nom	15:00	7358	543	456	2851	40	50	3465	0	14133
4000	16.00	7347	544	415	2243	40	50	4065	0	14117
Lind	17:00	7342	545	444	1680	40	236	4260	0	13868
2000	18.00	7363	540	329	1085	40	998	4480	0	14291
	19.00	7340	545	452	416	40	1358	4591	0	14081
\cdots	20.00	7355	566	535	86	40	936	4850	1208	15020
+心-	21:00	7356	565	280	0	40	1591	4851	1208	15256
	22:00	7331	558	407	0	42	1393	4883	1208	15215
	23:00	7352	539	280	0	42	1226	4897	0	13762

Figure 25: July 27th Summer Saturday: 202 I, 0,0\% Yearly Growth, Intercon. 6,24 I MW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Iuly $27^{\text {th }}$ Summer Saturday: 2021, 0,5\% Yearly Growth, Intercon. 624IMW Solar, 2585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

	23.07.2019	NP	OPPP	mind	Solar	Runcof. Ever	Hpdro	TPP	$\begin{aligned} & \text { Psyp } \\ & \text { GEm } \end{aligned}$	Load + Intercen. + Prife lood
	00.00	7612	452	625	0	24	479	4371	0	13156
	02:00	7628	459	572	0	22	522	3698	0	12489
18000	0 0:00	7614	444	596	0	23	651	3671	0	12592
	caso	7624	447	539	0	23	536	3690	0	12425
16050	04:00	7604	455	617	0	23	344	3425	0	11918
\square	Os:00	7622	456	502	53	23	530	3604	0	12316
$14000 \sim$-romem	06.00	7614	455	284	151	23	502	3204	0	11766
	07:00	7622	460	152	430	23	427	3257	0	11784
12050	cesom	7632	516	25	1099	22	223	3883	0	12857
-	Oe:00	7628	545	58	1925	42	129	4175	0	14183
10050 - -	10:00	7627	542	230	2929	42	50	3141	0	13988
-ser	11:00	7607	548	210	3390	42	50	3120	0	14526
8050 - -wout	12:00	7591	539	345	3518	43	50	2776	0	14344
	13:00	7592	547	444	3200	40	50	3156	0	14409
6050	14:00	7588	547	465	2907	40	50	3549	0	14506
-	15:00	7562	543	456	2851	40	50	3411	0	14284
4050	16:00	7551	544	415	2243	40	50	4011	0	14267
	17:00	7546	545	444	1680	40	182	4260	0	14018
2000	18.00	7567	540	329	1085	40	945	4480	0	14442
	19:00	7543	545	452	416	40	1305	4591	0	14232
-	20:00	7559	566	535	86	40	920	4850	1208	15208
- \%ose	21:00	7560	565	280	0	40	1583	4851	1208	15452
	22:00	7535	558	407	0	42	1380	4883	1208	15406
	2300	7556	539	280	0	42	1226	4841	0	13911

Figure 26: July 27th Summer Saturday: 202 I, 0,5\% Yearly Growth, Intercon. 6,24 I MW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Iuly $27^{\text {th }}$ Summer Saturday: 2021, 0,5\% Yearly Growth, Iso 624IMW Solar, 2585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

		2307.009	Nop	arp	wnd	Solar	munot	mpro	Tpp	$\begin{aligned} & \text { psw } \\ & \text { com } \end{aligned}$	Lead + Intercan. Prime 1020
		00.00	7612	452	625	0	24	576	4371	0	13315
	27-4y- Summer Sturdry	02:00	7628	459	572	0	22	494	3698	0	12529
18050	2730 - Summer Sturday	© 0.00	7614	444	596	0	23	432	3671	0	12480
		0300	7624	447	539	0	23	447	3690	0	12433
16050		04.00	7604	455	617	0	23	740	3425	0	12339
		cs.00	7622	456	502	53	23	490	3604	0	12347
14000	an	0500	7614	455	284	151	23	543	3204	0	11899
	-"	0700	7622	460	152	430	23	777	3267	-	12254
12000		cesom	7632	516	25	1099	22	340	3883	0	13021
		0800	7628	545	58	1925	42	287	4175	0	14349
10000	racer	11000	7627	542	230	2929	42	50	3763	0	14727
	- -	11.00	7607	548	210	3390	42	50	3229	0	14693
8000	-wou	12000	7591	539	345	3518	43	50	3017	0	14636
		13:00	7592	547	444	3200	40	50	3364	0	14751
${ }^{6050}$	-om	14.60	7588	547	465	2907	40	50	3647	0	14730
		15:00	7562	543	456	2851	40	50	3660	0	14638
+000		16.000	7551	544	415	2243	40	143	4134	0	14561
	Litimm	17000	7546	545	444	1680	40	550	4260	0	14482
2000		18000	7567	540	329	1085	40	1206	4480	0	14746
		${ }^{1900}$	7543	545	452	416	40	1466	4769	0	14699
		2000	7559	566	535	86	40	991	4850	1208	15399
	ぶoser	21:00	7560	565	280	0	40	1619	4851	1208	15570
		22000	7535	558	407	0	42	1451	4883	1208	15530
		23:00	7556	539	280	0	42	1226	5286	0	14363

Figure 27: July 27th Summer Saturday: 202 I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Iuly 27 ${ }^{\text {th }}$ Summer Saturday: 2025, 1,2\% Yearly Growth, Intercon. 7500MW Solar, 2500MWWind, 10\% NPP Reduction, 0\% CHPP Reduction

Figure 28: July 27th Summer Saturday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, I0\% NPP Reduction, 0\% CHPP Reduction

Iuly 27 ${ }^{\text {ch }}$ Summer Saturday: 2025, 1,2\% Yearly Growth, Intercon. 9500 MW Solar, 3000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction

Figure 29: July 27th Summer Saturday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, I0\% CHPP Reduction

Figure 30: July 27th Summer Saturday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

Figure 31: Oct 9th Autumn Wednesday: As-Is

Figure 32: Oct 9th Autumn Wednesday: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Oct $9^{\text {th }}$ Autumn Wednesday: 2021, 0,5\% Yearly Growth, Intercon. 624 IMW Solar, 2585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Figure 33: Oct 9th Autumn Wednesday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Oct $9^{\text {dh }}$ Autumn Wednesday: 2021, 0,5\% Yearly Growth, Iso 624IMW Solar, 2585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction										
	0810.3019	N0p	OPP	wnd	Solar	Run of.	mpro	Tpp	psem	Lead + Intercan.
	0,000	7355	546	143	0	12	774	5812	714	15127
28000 - 09. Oct Autumn Wechesdry	02:00	7343	544	134	0	11	703	5674	0	14234
	$\omega^{0.00}$	7359	544	115	0	11	705	6101	0	14702
	caso	7361	544	171	0	12	858	5916	0	14753
	9:000	7350	543	214	0	12	705	5984	0	14723
20050 - -mercom	06.00	7339	544	221	0	12	857	5663	0	14504
	0600	7360	546	227	0	12	964	5673	0	14673
5050	0700	7360	544	246	67	12	1603	5791	1208	16730
	0 cos	7364	590	295	674	13	1427	6027	1208	17212
	08:00	7345	677	224	1099	23	1751	6535	614	17894
	1000	7367	674	444	2086	24	77	6710	627	18474
${ }_{10050}$	11:00	7343	678	569	2282	25	466	6856	0	17915
	12000	7337	676	709	2906	24	50	6449	0	17999
	13:00	7324	677	765	2965	25	48	6166	0	17867
	14.00	7330	675	852	2396	28	50	6960	0	18277
5000	15:00	7320	670	942	2324	28	50	6586	0	17861
	1600	7326	675	858	1427	27	641	7075	0	17964
	17:00	7320	676	746	919	25	1203	7029	0	17613
	18000	7320	678	643	135	24	1381	7202	890	18064
	19000	7334	678	684	0	25	1836	7539	1208	19025
	2000	7324	675	702	0	25	1679	7553	1208	18801
	22:00	7328	676	799	0	25	1628	7241	1208	18570
	2200	7305	678	973	0	25	1030	7283	703	17804
	23:00	7320	655	${ }^{808}$	0	16	698	7062	0	16445

Figure 34: Oct 9th Autumn Wednesday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Oct $9^{\text {ch }}$ Autumn Wednesday: 2025, 1,2\% Yearly Growth, Intercon. 7500MW Solar, 2500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

	03.10.2019	NP	OHPP	Whnd	Solar	Run-of: Fiver	Hpdro	TpP	$\begin{aligned} & \text { PSHPT } \\ & \text { Gem. } \end{aligned}$	Lead + Intericon. + Eatrelogd
	cosid	7156	546	138	0	12	774	6358	940	15611
	02:00	7144	544	129	0	11	703	6602	0	14888
25000 O9.Oct - Autumn Wednesday	00.00	7160	544	111	0	11	705	6691	0	15012
	crico	7162	544	165	0	12	858	6526	0	15110
	04:00	7151	543	207	0	12	705	6426	0	14900
	cs:00	7141	544	213	0	12	857	6532	0	15111
20050 - -roven	06.00	7161	546	219	0	12	964	6657	0	15418
\bigcirc-m	07:00	7161	544	237	81	12	1807	6399	1532	17599
	cesios	7165	590	286	810	13	1486	6117	1532	17543
15000×1	cesod	7146	677	216	1321	23	1810	6853	809	18407
-neoter	10.00	7168	674	430	2507	24	1176	6710	827	19209
-sar	11:00	7144	678	550	2742	25	875	6856	0	18504
	12:00	7139	676	685	3493	24	50	6799	0	18672
10050 -	13:00	7126	677	739	3563	25	48	6321	0	18344
-om	14:00	7132	675	824	2880	28	676	6980	0	19088
-	15:00	7122	670	911	2793	28	266	6982	0	18636
5050 - -anallas	16.00	7128	675	830	1715	27	1396	7104	0	18731
$=$ inim	17:00	7122	676	721	1105	25	1203	7445	0	17936
	18:00	7122	678	622	162	24	1484	7624	1173	18630
	19:00	7136	678	661	0	25	1836	8057	1532	19542
	20000	7126	675	679	0	25	1679	7977	1532	19230
-0\%	21:00	7130	676	773	0	25	1628	7722	1532	19082
	22:00	7107	678	941	0	25	1107	7620	926	18122
	23:00	7122	655	782	0	16	705	7886	0	16981

Figure 35: Oct 9th Autumn Wednesday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Oct $9^{\text {ch }}$ Autumn Wednesday: 2025, 1,2\% Yearly Growth, Intercon. 9500 MW Solar, 3000MW Wind, 10\% NPP Reduction, I0\% CHPP Reduction																			
	09.10 .2009	NPP	OPP	Wind	Solar	Run-of. Eiver	Hpdro	TPP	PSAPT $\operatorname{sen} \text {. }$	Load + Intercon. + Retre logd									
	00.00	7156	491	166	0	12	774	6385	940	15611									
$25050 \times$ 09.Oct - Autumn Wednesdzy	02:00	7144	490	155	0	11	703	6630	0	14888									
	crivo	7160	490	133	0	11	705	6723	0	15012									
	caso	7162	490	198	0	12	858	6547	0	15110									
	04:00	7151	489	249	0	12	705	6439	0	14900									
	0_{0} civa	7141	490	256	0	12	857	6544	0	15111									
20050 -romen	06.00	7161	491	263	0	12	964	6667	0	15418									
	07:00	7161	490	285	103	12	1807	6384	1532	17599									
	cesiol	7165	531	343	1026	13	1446	6027	1532	17628									
15050	0esom	7146	609	260	1673	23	1806	6535	809	18413									
	10:00	7168	607	516	3175	24	646	6710	827	19366									
-sar	11:00	7144	610	660	3473	25	102	6856	0	18504									
—war	12:00	7139	608	822	4424	24	50	5798	0	18672									
10050 - -wor	13:00	7126	609	887	4513	25	48	5291	0	18344									
-ow	14:00	7132	608	988	3647	28	50	6741	0	19088									
	15:00	7122	603	1093	3538	28	50	6338	0	18636									
5050 - -santast	16:00	7128	608	996	2173	27	869	7075	0	18731									
-	17:00	7122	608	866	1399	25	1203	7074	0	17936									
	18.00	7122	610	747	205	24	1484	7524	1173	18630									
	19:00	7136	610	794	0	25	1836	7992	1532	19542									
	20:00	7126	608	815	0	25	1679	7908	1532	19230									
	21:00	7130	608	927	0	25	1628	7635	1532	19082									
[\|c	c	c	c	c	c	c	c	l											

Figure 36: Oct 9th Autumn Wednesday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction

Oct $9^{\text {th }}$ Autumn Wednesday: 2025, 1,2\% Yearly Growth, Intercon. I 2000 MW Solar, 7500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

	03.10.2019	Nap	OHPP	wnd	Solar	Run-of River	Hpdro	TPP	$\begin{aligned} & \text { PSAPP } \\ & \text { Gten } \\ & \hline \end{aligned}$	Load + Intercon. - Prifelogd
	00.00	3976	437	415	0	12	774	9371	940	15611
	01:00	3969	435	388	0	11	703	9627	0	14888
25050	0200	3978	435	334	0	11	705	9760	0	15012
	caso	3979	435	496	0	12	858	9487	0	15110
	04.00	3973	434	622	0	12	705	9298	0	14900
	Os:00	3967	435	640	0	12	857	9387	0	15111
20050 - -momen	06.00	3979	437	658	0	12	964	9510	0	15418
-m	07:00	3979	435	712	130	12	1807	9167	1532	17599
	cesol	3981	472	857	1297	13	1486	8362	1532	17543
${ }_{15000}+1$	OE:00	3970	542	649	2113	23	1810	8939	809	18407
-rederer	10:00	3982	539	1290	4011	24	1469	6988	827	18823
-sar	11:00	3969	542	1650	4387	25	1310	6987	0	18504
\% - -	12:00	3966	541	2056	5588	24	50	6641	0	18672
10050 -	13:00	3959	542	2218	5701	25	48	6007	0	18344
-ow	14:00	3962	540	2471	4607	28	606	6980	0	19088
-	15:00	3957	536	2732	4469	28	68	6982	0	18636
5000 - - - antan	16:00	3960	540	2489	2744	27	1396	7718	0	18731
Latand	17:00	3957	541	2164	1768	25	1203	8640	0	17936
	18:00	3957	542	1867	259	24	1484	9583	1173	18630
	19:00	3965	542	1984	0	25	1836	10041	1532	19542
	20.00	3959	540	2038	0	25	1679	9920	1532	19230
	21:00	3961	541	2318	0	25	1628	9481	1532	19082
	22:00	3949	542	2823	0	25	1107	9033	926	18122
	23:00	3957	524	2345	0	16	705	9619	0	16981

Figure 37: Oct 9th Autumn Wednesday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

Figure 38: Oct 20th Autumn Sunday: As-Is

Oct $20^{\text {th }}$ Autumn Sunday: 2021, 0,0\% Yearly Growth, Intercon, 624 IMW Solar, 2585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

	20.102019	NPP	GPp	mand	Solar	Runot. Rever	mproo	Tpp	psemp	Lead + Intiercan. + Extelayd
	0000	7922	506	16	0	18	1409	4288	0	13592
20.0 ct. Autumn Sundy	02:00	7939	475	22	0	18	858	3996	0	12995
20000 (20.0xt-Autumn Sundy	0.00	7914	483	16	0	18	624	4111	0	12863
	0300	7927	474	22	0	18	625	4282	0	13117
18000	(0:000	7949	472	37	0	18	624	4352	0	13271
	cos:00	7927	478	25	0	18	625	4208	0	13128
S000	0600	7946	475	40	0	18	624	4326	0	13123
-"	00, 500	7947	483	34	99	18	625	4225	0	13205
-4	cesm	7952	583	40	319	19	625	4269	0	13529
12000	ceso	7964	619	25	787	26	830	4244	0	14565
- -rater	10000	7961	617	31	1423	27	145	4482	1208	16019
10050 - -om	11.00	7961	611	40	1996	28	50	3974	1208	15996
- -ma	12.00	7956	610	25	2419	27	48	3630	0	15099
${ }^{5000}$ -	13:00	7929	620	12	2488	27	48	3599	0	14881
6000	14.00	7934	606	12	2423	27	48	3460	0	14681
- -om	${ }^{15: 500}$	7901	606	28	2059	27	48	3433	0	14288
4000 - -imutim	16600	7917	621	31	1445	27	424	4156	0	14832
Etram	17000	7922	615	31	764	27	1069	4788	0	15526
2005	1800	7926	619	19	76	27	1185	5236	199	15460
	19.00	7923	614	6	9	28	1990	5498	1208	17221
	20.00	7935	618	25	4	37	1938	5152	1208	16773
	21:00	7940	621	19	4	28	1533	4938	1135	16123
	2200	7911	617	19	2	28	1153	5200	439	15402
	23:00	7933	553	28	2	27	625	5166	199	14415

Figure 39: Oct 20th Autumn Sunday: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Oct $20^{\text {th }}$ Autumn Sunday: 2021, 0,5\% Yearly Growth, Intercon, 624IMW Solar, 2585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

	20.10 .2019	NPP	G.fp	Whnd	Solar	Runot. Rwer	Hedro	TPP	$\begin{aligned} & \text { Pssp } \\ & \text { Gem } \end{aligned}$	Load + Intercan. + Prifityond
	$\infty 000$	8142	506	16	0	18	1409	4206	0	13731
	02:00	8159	475	22	0	18	858	3907	0	13127
20050	co:00	8134	483	16	0	18	624	4018	0	12989
	08.00	8147	474	22	0	18	625	4187	0	13242
18000	04:00	8170	472	37	0	18	624	4257	0	13396
	Ofico	8147	478	25	0	18	625	4113	0	13253
16000 -ramen	06.00	8167	475	40	0	18	624	4233	0	13251
(0000	07:00	8168	483	34	99	18	625	4137	0	13338
${ }^{14050} \times$	cesio	8172	583	40	319	19	625	4185	0	13667
12050	Oend	8185	619	25	787	26	754	4244	0	14710
-redem	10000	8182	617	31	1423	27	119	4482	1208	16214
10050 - - -	12:00	8182	611	40	1996	28	50	3902	1208	16145
	12:00	8177	610	25	2419	27	48	3557	0	15246
${ }^{8050}$	13:00	8149	620	12	2488	27	48	3524	0	15026
${ }_{6000} \square$	14:00	8155	606	12	2423	27	48	3383	0	14825
${ }^{6000}$	15:00	8121	606	28	2059	27	48	3356	0	14431
$4050 \text { - -surthat. }$	16:00	8137	621	31	1445	27	348	4156	0	14976
	17:00	8142	615	31	764	27	998	4788	0	15675
2050	18:00	8146	619	19	76	27	1185	5172	199	15616
	19:00	8143	614	6	9	28	1990	5447	1208	17390
	20.00	8156	618	25	4	37	1926	5152	1208	16981
	21:00	8160	621	19	4	28	1520	4938	1135	16330
	22:00	8131	617	19	2	28	1153	5138	439	15560
	23:00	8153	553	28	2	27	625	5092	199	14562

Figure 40: Oct 20th Autumn Sunday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

	20.102019	npp	OHP	Whnd	Solar	Run-of River	mpdro	TTP	$\begin{aligned} & \text { PStrp } \\ & \text { Sen. } \end{aligned}$	Lead + Interican. - Prifologd
	00000	8142	506	16	0	18	1382	3783	0	13424
Oct. Autumn	02:00	8159	475	22	0	18	858	4044	0	13305
20050 - 20.Oct - Autumn	00:00	8134	483	16	0	18	624	4185	0	13282
	caso	8147	474	22	0	18	625	4424	0	13509
18000	04.00	8170	472	37	0	18	624	4423	0	13582
	0 civo	8147	478	25	0	18	625	4493	0	13644
16000 -ramen	0600	8167	475	40	0	18	624	4479	0	13607
14050 - -To	07:00	8168	483	34	99	18	625	4354	0	13626
14000 -	cesol	8172	583	40	319	19	605	4167	0	13648
12050	0 O00	8185	619	25	787	26	901	4297	0	14950
-rodem	10.00	8182	617	31	1423	27	264	4482	1208	16468
10050 - -	21:00	8182	611	40	1996	28	50	4170	1208	16490
-wat	12:00	8177	610	25	2419	27	48	3902	0	15594
${ }^{3050}$	13:00	8149	620	12	2488	27	48	3608	0	15138
6050	14:00	8155	605	12	2423	27	48	3519	0	14975
6000 - -	15:00	8121	605	28	2059	27	177	3717	0	15030
4050 - -serthate	16:00	8137	621	31	1445	27	424	4156	0	15154
- - 4nm	17:00	8142	615	31	764	27	1083	4788	0	15784
2050	18.00	8146	619	19	76	27	1185	5745	199	16201
	19:00	8143	614	6	9	28	1975	5223	1208	17221
1.80 .68 .80	20.00	8156	618	25	4	37	1950	5232	1208	17186
-\%\% - \%	21:00	8160	621	19	4	28	1623	5282	1135	16876
	22:00	8131	617	19	2	28	1153	5627	439	16102
	2300	8153	553	28	2	27	625	5267	199	14842

Figure 4I: Oct 20th Autumn Sunday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Oct $20^{\text {th }}$ Autumn Sunday: 2025, 1,2\% Yearly Growth, Intercon. 7500MW Solar, 2500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction										
	20.102019	NPP	CHPP	mind	Solar	Run-of. Fiver	Hpdro	TPP	PSHP sm	Lead + Intercen. + Bris lond
	00.00	7922	506	15	0	18	1409	5316	0	14619
20050 20.Oct - Auturnn Sundry	02:00	7939	475	21	0	18	858	4971	0	13969
	02:00	7914	483	15	0	18	624	5048	0	13799
	@:00	7927	474	21	0	18	625	5208	0	14042
18050	04:00	7949	472	36	0	18	624	5279	0	14197
,	Of:00	7927	478	24	0	18	625	5137	0	14057
16000 -noman	0600	7946	475	39	0	18	624	5278	0	14074
14050	0700	7947	483	33	119	18	625	5190	0	14189
	cesido	7952	583	39	384	19	625	5224	0	14548
12050	0esob	7964	619	24	945	26	901	5090	0	15640
	10.00	7961	617	30	1710	27	399	4482	1532	16883
$10050 \times-$-sar	11:00	7961	611	39	2399	28	211	4206	1532	17114
	12:00	7956	610	24	2907	27	174	4106	0	16188
s000 \square	13:00	7929	620	12	2990	27	113	4108	0	15956
amo -om	14:00	7934	606	12	2912	27	151	3932	0	15745
-	15:00	7901	606	27	2474	27	406	3717	0	15345
4050 - - imathate	16:00	7917	621	30	1737	27	877	4476	0	15895
-	17:00	7922	615	30	918	27	1086	5723	0	16632
2050	1800	7926	619	18	92	27	1185	6315	262	16617
	19:00	7923	614	6	11	28	1990	6421	1532	18470
	20.00	7935	618	24	5	37	1950	6041	1532	17997
	21:00	7940	621	18	5	28	1623	5455	1496	17091
	22:00	7911	617	18	3	28	1153	6228	579	16570
	23:00	7933	553	27	3	27	625	6188	262	15500

Figure 42: Oct 20th Autumn Sunday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Oct $20^{\text {th }}$ Autumn Sunday: 2025, 1,2\% Yearly Growth, Intercon. 9500 MW Solar, 3000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction

	20.102019	NPP	OfPP	wnd	Solar	Runot. Rever	Hedro	Tpp	${ }_{\text {psam }}^{\text {cman }}$	Load + Intercon
	como	7922	455	18	0	18	1409	5363	0	14619
	01:00	7939	428	25	0	18	858	5014	0	13969
200000 - 20.Oct-Autumn Sundy	0×00	7914	435	18	0	18	624	5093	0	13799
	0300	7927	427	25	0	18	625	5251	0	14042
180000	04.00	7949	425	43	0	18	624	5319	0	14197
	0 6.00	7927	430	29	0	18	625	5180	0	14057
1650	0600	7946	428	47	0	18	624	5317	0	14074
14080	07:00	7947	435	40	151	18	625	5200	0	14189
14050	ce.00	7952	525	47	486	19	625	5172	0	14548
12000	Ceso	7964	557	29	1198	26	901	4895	0	15640
-radem	12000	7961	555	36	2166	27	275	4482	1532	17160
10050	11200	7961	550	47	3038	28	50	4092	1532	17425
-wa	12200	7956	549	29	3682	27	48	3513	0	16188
${ }^{0000}$	13:00	7929	558	14	3788	27	48	3435	0	15956
6000	34.00	7934	545	14	3689	27	48	3317	0	15745
	15:00	7901	545	32	3134	27	48	3471	0	15345
4000 - -imitiom	16000	7917	559	36	2200	27	790	4156	0	15895
-	17000	7922	554	36	1163	27	1085	5534	0	16632
2000	18.00	7926	557	22	116	27	1185	6349	262	16617
	19.00	7923	553	7	14	28	1990	6478	1532	18470
$\cdots{ }^{\circ}$	2000	7935	556	29	7	37	1950	6095 5512	1532	17997
	2100	7940	559	22	7	28	1623	5512	1496	17091
	22000	7911	555	22 32	3	28 27	1153 625	${ }_{62285}^{623}$	579 262	16570 15500
	2300			32	3	27	625	6237	262	15500

Figure 43: Oct 20th Autumn Sunday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, I0\% CHPP Reduction

Oct $20^{\text {th }}$ Autumn Sunday: 2025, 1,2\% Yearly Growth, Intercon. I2000MW Solar, 7500MWWind, 50\% NPP Reduction, 20\% CHPP Reduction

Figure 44: Oct 20th Autumn Sunday: 2025, I,2\% Yearly Growth, Intercon. 12,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

Figure 45: Oct 26th Autumn Saturday: As-Is

Oct $26^{\text {th }}$ Autumn Saturday: 2021, 0,0\% Yearly Growth, Intercon. 624IMW Solar, 2585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

	25.10.2019	npp	OHPP	Whnd	Solar	Run of Ewer	Hpdro	TTP	$\begin{aligned} & \text { Pssp } \\ & \text { Gem } \end{aligned}$	Load + Intercon. + Priselogd
	00.00	8889	514	131	0	16	621	4684	0	14506
	02:00	8898	489	196	0	16	622	3795	0	13822
20050 26.0ct - Autu	ω coso	8906	489	314	0	16	622	3554	0	13604
	0 civo	8913	502	448	0	16	781	3401	0	13814
18050	04.00	8924	500	491	0	16	622	3348	0	13656
\sim	Of.00	8906	499	441	0	16	622	3402	0	13635
16000 -rsercomer	0600	8906	506	423	0	16	703	3454	0	13791
\checkmark-m	07:00	8894	489	438	0	16	622	3903	0	14376
14050	cesol	8918	529	292	115	16	622	4642	0	15172
12050	cesom	8915	598	261	427	18	622	5010	0	16035
-hederer	10:00	8920	601	326	888	18	545	4755	0	16014
10050 - -sotr	11:00	8918	608	218	1133	20	501	4592	0	16039
-War	12:00	8926	634	115	1425	17	171	4645	0	16090
8000	13:00	8919	636	143	1448	17	136	4462	0	15996
6000 \quad-om	14:00	8914	635	277	1515	17	48	4445	0	16196
${ }^{6000}$	15:00	8901	627	205	1425	17	107	4338	0	15909
4050 - -iantas	16:00	8891	624	211	996	17	642	4495	0	16210
lovec in liptr	17:00	8888	595	159	330	17	1062	5223	0	16656
2050	18:00	8885	626	174	13	17	1786	5694	0	17547
	19000	$8 \mathrm{B78}$	627	131	0	19	2298	5062	1208	18397
-	20000	8906	625	62	0	19	1647	5160	1208	17796
	22:00	8908	623	106	0	19	1536	5112	1208	17622
	22:00	8922	622	78	0	19	957	5404	0	15996
	23:00	8925	605	59	0	19	667	5068	0	15358

Figure 46: Oct 26th Autumn Saturday: 202 I, 0,0\% Yearly Growth, Intercon. 6,24 I MW Solar, 2,585MW Wind, I0\% NPP Reduction, 0\% CHPP Reduction

Oct $26^{\text {th }}$ Autumn Saturday: 2021, 0,5\% Yearly Growth, Intercon. 624 IMW Solar, 2585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

	25.102019	NPP	OHPP	wind	Solar	Runof: River	mpdro	TTP	$\begin{aligned} & \text { Pssp } \\ & \text { GEm. } \\ & \hline \end{aligned}$	Lead + Intercan. + Prifelogd
	couno	9136	514	131	0	16	621	4585	0	14653
	01:00	9145	489	196	0	16	622	3687	0	13961
20050	0 co:00	9153	489	314	0	16	622	3440	0	13737
	cravo	9160	502	448	0	16	781	3286	0	13947
$18000 \longrightarrow$	04:00	9172	500	491	0	16	589	3264	0	13786
\sim	06:00	9154	499	441	0	16	622	3286	0	13767
16000 -roman	06.00	9154	506	423	0	16	703	3342	0	13927
- -m	07:00	9141	489	438	0	16	622	3796	0	14516
$14050 \times$	0 ceso	9166	529	292	115	16	622	4541	0	15319
12050	cesion	9163	598	261	427	18	536	5008	0	16194
-reater	10,00	9168	601	326	888	18	460	4755	0	16177
10050 - -sor	12:00	9166	608	218	1133	20	416	4592	0	16201
-War	12:00	9174	634	115	1425	17	82	4645	0	16250
${ }^{8050}$	13:00	9167	636	143	1448	17	46	4462	0	16153
6050 - -ome	14:00	9161	635	277	1515	17	48	4354	0	16353
6050	15:00	9148	627	205	1425	17	48	4306	0	16065
4050 - - -antas	16:00	9138	624	211	996	17	552	4495	0	16367
hivec. S MryP	17:00	9134	595	159	330	17	1062	5138	0	16817
2050	18:00	9132	626	174	13	17	1786	5617	0	17717
	19:00	9124	627	131	0	19	2291	5062	1208	18637
-	20:00	9154	625	62	0	19	1633	5160	1208	18028
	21:00	9156	623	106	0	19	1519	5112	1208	17852
	22:00	9170	622	78	0	19	957	5320	0	16160
	23:00	9173	605	59	0	19	667	4975	0	15513

Figure 47: Oct 26th Autumn Saturday: 202I, 0,5\% Yearly Growth, Intercon. 6,24I MW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Oct $26^{\text {th }}$ Autumn Saturday: 2021, 0,5\% Yearly Growth, Iso 624IMW Solar, 2585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction										
	28.102019	npp	Opp	mond	solar	Run-of River	mpro	Tpp	$\begin{aligned} & \text { Psw } \end{aligned}$	Lead + initarcan Exhe logd
	0000	9136	514	131	0	16	621	4364	0	14575
$200000 . \quad 26.0$ ct - Autumn Suturday	01:00	9145	489	196	0	16	622	4204	0	14490
	0×00	9153	489	314	0	16	622	3819	0	14190
	0300	9160	502	448	0	16	781	3407	0	14062
18000	aneo	9172	500	491	0	16	622	3269	0	13878
16000	csi.00	9154	499	441	0	16	622	3485	0	14032
	0600	9154	506	423	0	16	565	3304	0	13734
$14050 \sim$ - -	0700	9141	489	438	0	16	622	4182	0	14898
	0×00	9166	529	292	115	16	622	4669	0	15544
12000	0800	9163	598	261	427	18	622	5223	0	16548
- Traser	12000	9168	601	326	${ }^{888}$	18	796	4785	0	16627
10050	11:00	9166	608	218	1133	20	811	4619	0	16707
${ }^{5000}$	1200	9174	634	115	1425	17	382	4645	0	16632
	13.00	9167	636	143	1448	17	316	4462	0	16509
${ }^{6000}$	14.50	9161	635	277	1515	17	122	4483	0	16630
	15:00	9148	627	205	1425	17	387	4338	0	16521
${ }^{4000}$ (-	15:00	9138	624	211	996	17	796	4495	0	16701
2000	17000	9134	595	159	330	17	1062	5440	0	17209
	18.00	9132	626	174	13	17	1786	5848	0	18056
	1900	9124	627	131	0	19	2294	5062	1208	18735
	20.00	9154	625	62	0	19	1712	5160	1208	18192
	2200	9156	623	106	0	19	1557	5112	1208	17984
	2200	9170	622	78	0	19	957	5928	0	16897
	23.00	9173	605	59	0	19	667	5244	0	15910

Figure 48: Oct 26th Autumn Saturday: 202I, 0,5\% Yearly Growth, Iso 6,24I MW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Oct $26^{\text {th }}$ Autumn Saturday: 2025, 1,2\% Yearly Growth, Intercon. 7500MW Solar, 2500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Figure 49: Oct 26th Autumn Saturday: 2025, 1,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Oct $26^{\text {th }}$ Autumn Saturday: 2025, 1,2\% Yearly Growth, Intercon. 9500MW Solar, 3000MW Wind, 10\% NPP Reduction, I0\% CHPP Reduction

	28.10 .2019	NPP	OHPP	Wind	Solar	Run-of: Eiver	Hpdro	TPP	PSHP Gm.	Lead + Intercon. + Estis lond
	00.00	8889	463	151	0	16	621	5805	0	15597
260 ct Autum S3turdy	01:00	8898	440	227	0	16	622	4843	0	14852
25050 26.0ct - Autumn Situ	∞ ¢00	8906	440	364	0	16	622	4540	0	14592
	0300	8913	452	519	0	16	781	4360	0	14795
	04:00	8924	450	570	0	16	622	4281	0	14618
	Cs:00	8906	449	512	0	16	622	4354	0	14609
20050 - -rowcon	06.00	8906	455	491	0	16	703	4440	0	14795
- -	07:00	8894	440	509	0	16	622	4917	0	15411
-	cesol	8918	476	339	175	16	622	5678	0	16263
15050×1	Oe:00	8915	538	303	650	18	622	5982	0	17213
-keders	10.00	8920	541	379	1352	18	796	5255	0	17221
-sar	11:00	8918	547	252	1724	20	811	4917	0	17239
-Wat	12:00	8926	571	133	2169	17	622	4676	0	17272
10050	13:00	8919	572	166	2204	17	585	4462	0	17160
-000	14:00	8914	572	321	2306	17	397	4483	0	17355
-	15:00	8901	564	238	2169	17	547	4338	0	17064
5000	16:00	8891	562	245	1516	17	860	4947	0	17372
	17:00	8888	536	184	503	17	1062	6277	0	17848
	18:00	8885	563	202	21	17	1786	6980	0	18806
	19:00	8878	564	151	0	19	2325	5814	1532	19459
	20.00	8906	563	72	0	19	1729	5782	1532	18771
	21:00	8908	561	123	0	19	1634	5662	1532	18548
	22:00	8922	560	90	0	19	957	6666	0	17208
	23:00	8925	545	69	0	19	667	6264	0	16502

Figure 50: Oct 26th Autumn Saturday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction

Oct $26^{\text {th }}$ Autumn Saturday: 2025, 1,2\% Yearly Growth, Intercon. I 2000 MW Solar, 7500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

	25.10.2019	NPP	G.fp	wnd	Solar	Run-of. Biver	Hpdro	TPP	PSHP Gen.	Lead + Intercan. - Priselogd
	00.00	4939	411	379	0	16	621	9580	0	15597
	01:00	4944	391	568	0	16	622	8506	0	14852
25000	02:00	4948	391	911	0	16	622	8001	0	14592
	caso	4952	402	1299	0	16	781	7592	0	14795
	04:00	4958	400	1425	0	16	622	7443	0	14618
	crivo	4948	399	1281	0	16	622	7594	0	14609
20050 - -romen	06.00	4948	405	1226	0	16	703	7714	0	14795
- -	07:00	4941	391	1271	0	16	622	8156	0	15411
-	cesod	4955	423	848	220	16	622	9140	0	16263
$15000 \times \sim$	cesob	4953	478	757	821	18	622	9379	0	17213
-reater	10.00	4956	481	947	1707	18	796	8356	0	17221
-sar	11:00	4955	486	631	2178	20	811	8108	0	17239
	12:00	4959	507	334	2740	17	622	7936	0	17272
10050 -	13:00	4955	509	415	2783	17	621	7625	0	17160
-om	14:00	4952	508	803	2913	17	622	7194	0	17355
-	15:00	4945	502	595	2740	17	622	7354	0	17064
5050 - -bathat	16:00	4940	499	613	1915	17	860	8194	0	17372
hoed	17:00	4938	476	460	635	17	1062	9878	0	17848
	18:00	4936	501	505	26	17	1786	10683	0	18806
	19:00	4932	502	379	0	19	2325	9595	1532	19459
-	20.00	4948	500	180	0	19	1729	9694	1532	18771
-	21:00	4949	498	307	0	19	1634	9500	1532	18548
	22:00	4957	498	225	0	19	957	10558	0	17208
	23:00	4959	484	171	0	19	667	10188	0	16502

Figure 5I: Oct 26th Autumn Saturday: 2025, I,2\% Yearly Growth, Intercon. 12,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

Figure 52: Jan 7th Christmas Day: As-Is

	07.01 .2020	NPP	OPPP	Wind	Solar	Run-of Ever	Hedro	TPP	$\begin{aligned} & \text { PSHEP } \\ & \text { Gen. } \end{aligned}$	Load + Intercen + Ftipload
	coubo	9514	1063	1394	0	23	367	3308	0	15525
07.1n. Chr	01:00	9508	1032	1003	0	22	691	3290	0	15262
20000 - 07.jan - Christmas D2y	co:vo	9499	1044	1037	0	22	600	3176	0	15151
	ca:00	9498	1047	968	0	22	614	3151	0	14960
18000 -	04:00	9506	1047	1561	0	22	361	3007	0	15470
-	cs:00	9499	1041	1394	0	22	266	2937	0	15040
16000 -rsemen	06.00	9500	1036	1407	0	22	261	3006	0	14985
-mm	07:00	9503	1044	1491	19	22	203	2930	0	15123
$14000-$	cesol	9488	1052	1322	87	23	265	3315	0	15202
12000	Oeso	9488	1093	1349	552	31	66	3416	0	15907
- -neder	10.00	9514	1163	1352	1315	32	88	3417	0	16876
10000 - -sar	11:00	9511	1163	1893	1867	32	48	2058	0	16635
	12:00	9493	1161	1890	2106	29	49	2595	0	17533
${ }^{8000}$	13:00	9508	1158	1818	1303	29	50	2369	0	16702
6000 -	14:00	9511	1164	1998	1303	31	48	2081	0	16026
${ }^{6000}$	15:00	9498	1153	1978	642	30	505	2746	0	16673
	16:00	9506	1157	2075	109	29	1083	2751	480	17346
	17:00	9496	1157	1923	2	29	1979	2797	1208	18436
2000	18:00	9518	1155	1786	0	32	2230	2781	1208	18489
	19:00	9510	1152	2072	0	32	1445	2799	0	17056
	20.00	9526	1158	1751	0	32	1771	2778	1208	18044
+心-	21:00	9507	1156	2050	0	33	1254	2851	1208	18095
	22:00	9502	1162	1985	0	33	1259	2852	1208	18091
	23:00	9498	1151	1930	0	29	835	2745	0	16228

Figure 53: Jan 7th Christmas Day: 202I, 0,0\% Yearly Growth, Intercon. 6,24 IMW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Figure 54: Jan 7th Christmas Day: 202I, 0,5\% Yearly Growth, Intercon. 6,24I MW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

	07.012020	npp	CHPP	whd	Solar	Run-of. Eiver	Hpdro	TPP	$\begin{aligned} & \text { Psspe } \\ & \text { Gom } \end{aligned}$	Lead + Intercen. + Prifitgard
	00.00	9778	1063	1394	0	23	337	3308	0	15796
. Christmas D_{1}	03:00	9772	1032	1003	0	22	473	3290	0	15324
20050 (${ }^{\text {argan - Christmas Day }}$	0000	9762	1044	1037	0	22	479	3176	0	15316
	03:00	9762	1047	968	0	22	214	3151	0	14829
18000	04:00	9770	1047	1561	0	22	231	3007	0	15598
N	Of:00	9762	1041	1394	0	22	70	2937	0	15106
$\underbrace{16050}$	06000	9763	1036	1407	0	22	48	3006	0	15053
-T"	07:00	9767	1044	1491	19	22	146	2930	0	15348
	cesico	9751	1052	1322	87	23	38	3315	0	15300
12000	Oefin	9751	1093	1349	552	31	279	3416	0	16440
-heoter	10:00	9778	1163	1352	1315	32	98	3417	0	17182
10050 - -sat	12:00	9775	1163	1893	1867	32	48	1587	0	16474
nWhent	12:00	9757	1161	1890	2106	29	49	2517	0	17696
${ }^{3050}$	13:00	9772	1158	1818	1303	29	50	2462	0	17095
6000	14:00	9775	1164	1998	1303	31	48	1447	0	15699
${ }^{6005}$	15:00	9762	1153	1978	642	30	727	2746	0	17205
	16:00	9770	1157	2075	109	29	1184	2751	480	17765
	17:00	9760	1157	1923	2	29	1727	2797	1208	18528
2050	18:00	9783	1155	1786	0	32	1810	2781	1208	18388
	1900	9774	1152	2072	0	32	1277	2799	0	17182
\cdots	20:00	9790	1158	1751	0	32	1531	2778	1208	18128
-\%\%****)	21:00	9771	1156	2050	0	33	836	2851	1208	17981
	22:00	9766	1162	1985	0	33	1069	2852	1208	18201
	23:00	9762	1151	1930	0	29	623	2745	0	16346

Figure 55: Jan 7th Christmas Day: 202I, 0,5\% Yearly Growth, Iso 6,24I MW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Figure 56: Jan 7th Christmas Day: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Jan $7^{\text {th }}$ Christmas Day: 2025, 1,2\% Yearly Growth, Intercon. 9500 MW Solar, 3000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction																				
	07.012020	NPP	GHPP	wind	Solar	Run-of. River	Hpdro	TTP	PSHP sen	Lead + Intercan. + Prifelond										
	00.00	9514	957	1618	0	23	774	3938	0	16680										
25050	01:00	9508	929	1164	0	22	841	4196	0	16375										
	$\omega \times 00$	9499	940	1204	0	22	790	3991	0	16218										
	03:00	9498	942	1123	0	22	769	3977	0	15992										
	09:00	9506	942	1812	0	22	844	3427	0	16519										
	Os:00	9499	937	1618	0	22	701	3408	0	16066										
20050 -rsercon	$06: 00$	9500	932	1632	0	22	703	3506	0	16049										
	or:00	9503	940	1731	28	22	703	3370	0	16207										
	cesol	9488	947	1534	132	23	695	3828	0	16298										
15000	0:00	9488	984	1566	840	31	702	3532	0	17054										
- - +eader	10,00	9514	1047	1569	2001	32	211	3417	0	17786										
- mar	11:00	9511	1047	2197	2842	32	48	2061	0	17800										
-Wal	12:00	9493	1045	2194	3206	29	49	2880	0	19106										
10050	13:00	9508	1042	2110	1983	29	50	2674	0	17863										
-om	14:00	9511	1048	2318	1983	31	48	2328	0	17157										
-n	15:00	9498	1038	2295	977	30	1189	2746	0	17894										
5050 - -iantion	16:00	9506	1041	2408	165	29	1606	2751	633	18297										
-	17:00	9496	1041	2232	3	29	2201	3162	1532	19542										
	18.00	9518	1040	2072	0	32	2324	2949	1532	19246										
	19:00	9510	1037	2405	0	32	1872	3384	0	18285										
	20.00	9526	1042	2032	0	32	1974	2808	1532	18767										
	21:00	9507	1040	2379	0	33	1639	2851	1532	19016										
[\|c	c	c	c	c	c	c	c	c	c											

Figure 57: Jan 7th Christmas Day: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, I0\% CHPP Reduction

Figure 58: Jan 7th Christmas Day: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

Figure 59: Jan 19th Winter Sunday: As-Is

Jan 19 Winter Sunday: 2021, 0,0\% Yearly Growth, Intercon. 624 MW Solar, 2585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction										
	39.01 2ma	NPP	OPp	mind	Solar	Runot. mover	Hpro	Tpp	$\begin{aligned} & \text { psatp } \\ & \cos \end{aligned}$	Lead + Intercean + Profed laxd
	co.00	9503	1036	459	0	21	618	5026	0	16566
rers	02.00	9478	990	716	0	22	618	4537	0	16419
Winter S	0×00	9497	992	676	0	22	860	4364	0	16482
	0300	9501	978	574	0	21	620	4357	0	15982
	9:400	9481	975	402	0	21	824	4378	0	15989
	06.00	9519	980	352	0	21	1135	4733	0	16464
20000 -ramen	0600	9484	977	352	0	17	620	4267	0	15360
- -m	07,00	9485	982	272	22	18	620	4619	0	15667
\rightarrow -	ceso	9501	1071	200	53	19	614	4668	0	15613
15000	Oeno	9491	1106	150	229	27	591	4339	1094	16624
- -reser	1000	9994	1110	37	397	28	645	4809	1208	17206
-sar	12:00	9503	1124	30	601	28	893	5013	1208	17939
wad	12.00	9498	1117	20	501	27	716	5005	1208	17639
10050	13:00	9496	1150	10	494	27	618	5859	0	17208
-om	14:000	9505	1193	20	374	29	793	6037	0	17553
-	15:00	9491	1185	30	187	29	984	6282	0	17854
5000 - -imuther	16.00	9503	1185	20	24	29	922	5638	1052	18082
- - inse	17.00	9508	1182	20	0	29	1076	6021	954	18541
	18:00	9501	1205	17	0	30	1308	6231	954	18702
	19000	9498	1201	42	0	30	1309	6245	0	17781
	2000	9479	1204	107	0	30	1099	6141	0	17554
-\%	21:00	9496	1195	147	0	30	885	6395	0	17701
	2200	9515	1187	192	0	30	685	5842	0	16986
	23:00	9503	1113	237	0	27	730	5607	0	16672

Figure 60: Jan 19th Winter Sunday: 202 I , 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, I0\% NPP Reduction, 0\% CHPP Reduction

Figure 6I: Jan 19th Winter Sunday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Figure 62: Jan 19th Winter Sunday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Figure 63: Jan 19th Winter Sunday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Figure 64: Jan 19th Winter Sunday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction

Jan 19 ${ }^{\text {ch }}$ Winter Sunday: 2025, 1,2\% Yearly Growth, Intercon. I2000MW Solar, 7500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

	19.012020	NPP	OHP	wnd	Solar	Run-of. River	Hpdro	TTP	Pstrp $\mathrm{Gm} \text {. }$	Load + Intercon. + Fisplond
	00.00	5280	829	1331	0	21	618	9799	0	17781
	02:00	5266	792	2077	0	22	618	8769	0	17601
25050 (${ }^{\text {a }}$	cu:00	5276	794	1961	0	22	860	8655	0	17639
	c3:00	5279	782	1664	0	21	620	8776	0	17073
	04:00	5267	780	1165	0	21	824	9150	0	17116
	Of:00	5289	784	1020	0	21	1135	9641	0	17613
20050 -rowem	06.00	5269	782	1020	0	17	620	9106	0	16457
-	07:00	5270	786	789	42	18	620	9658	0	16831
	ce:00	5279	857	579	101	19	614	9870	0	16806
15000	Oe:00	5273	885	434	441	27	800	8644	1441	17542
-rederer	10.00	5275	888	109	764	28	803	9436	1532	18310
-sorr	12:00	5280	899	87	1156	28	1070	9363	1532	18954
	12:00	5277	894	58	964	27	906	9416	1532	18620
10050	13:00	5276	920	29	950	27	618	11157	0	18531
-om	14:00	5281	954	58	719	29	793	11473	0	18909
-rer	15:00	5273	948	87	359	29	984	11865	0	19211
5000 - -	16:00	5280	948	58	46	29	1028	10753	1386	19237
	17,00	5282	946	58	0	29	1141	11380	1258	19845
	18000	5279	964	51	0	30	1347	11683	1258	20066
	19:00	5277	961	123	0	30	1309	12042	0	19197
	20.00	5266	963	311	0	30	1099	11772	0	18936
-	21:00	5276	956	427	0	30	885	11943	0	19070
	22:00	5286	950	557	0	30	685	11273	0	18316
	23:00	5280	890	687	0	27	730	10886	0	17956

Figure 65: Jan 19th Winter Sunday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

Figure 66: Jan 22nd Winter Wednesday: As-Is

Figure 67: Jan 22nd Winter Wednesday: 2021, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Figure 68: Jan 22nd Winter Wednesday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Figure 69: Jan 22nd Winter Wednesday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Figure 70: Jan 22nd Winter Wednesday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, I0\% NPP Reduction, 0\% CHPP Reduction

Figure 71: Jan 22nd Winter Wednesday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction

Figure 72: Jan 22nd Winter Wednesday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

Figure 73: Jan 25th Winter Saturday: As-Is

Figure 74: Jan 25th Winter Saturday: 202I, 0,0\% Yearly Growth, Intercon. 6,24I MW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Jan $25^{\text {th }}$ Winter Saturday: $2021,0,5 \%$ Yearly Growth, Intercon. 6241 MW Solar, 2585 MW Wind, 7,5\% NPP Reduction, 0% CHPP Reduction										
	25.01.2020	NPP	OHPP	Wha	Solar	Run-of- Rower	Hpdro	TPP	$\begin{aligned} & \text { PSSFP } \\ & \text { GEm } \end{aligned}$	Lagd + Intercan. + Retre lond
	00000	9781	1105	1893	0	18	50	4050	0	16832
25000 - 25.jn -Winter Saturday	01:00	9784	1070	1895	0	16	48	3635	0	16401
	02:00	9766	1052	1903	0	16	46	3635	0	16466
	caso	9776	1044	1903	0	18	46	3689	0	16539
	09:00	9790	1048	1875	0	18	99	3748	0	16700
	Os:00	9781	1043	1861	0	18	46	3879	0	16668
20050 -nomen	O6:00	9784	1048	1836	0	18	46	3990	0	16804
-m	07:00	9790	1053	1688	25	18	46	4079	0	16656
	cesol	9799	1126	1427	122	19	399	4314	0	17113
15050	Oesios	9768	1165	1172	812	28	190	4273	1208	18437
-kederer	10:00	9767	1183	1202	1719	28	50	4170	1208	19127
- bar	11:00	9761	1217	1167	2543	28	46	3649	0	18269
	12:00	9791	1205	1215	2832	26	48	3223	0	18259
10050	13:00	9789	1197	1367	2765	25	48	3807	0	18873
-com	14:00	9780	1196	1599	2281	27	50	4134	0	19060
-	15:00	9791	1205	1554	1255	27	478	4375	0	18706
	16:00	9796	1207	1451	365	27	1072	4627	615	19147
- -ishm	17:00	9781	1202	1569	5	27	1599	4891	1198	20172
	18.00	9782	1209	1479	2	29	1577	4773	1208	19836
	19:00	9788	1200	1269	2	29	1364	4777	1208	19397
	20.00	9778	1205	1344	2	29	902	4785	1208	19019
	22:00	9776	1206	1656	2	29	801	4791	1208	19331
	22:00	9789	1210	1703	2	29	194	4813	1208	18802
	23:00	9777	1159	1736	2	26	292	4705	0	17689

Figure 75: Jan 25th Winter Saturday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Figure 76: Jan 25th Winter Saturday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Jan $25^{\text {th }}$ Winter Saturday: 2025, 1,2\% Yearly Growth, Intercon, 7500MW Solar, 2500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Figure 77: Jan 25th Winter Saturday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Jan $25^{\text {ch }}$ Winter Saturday: 2025, 1,2\% Yearly Growth, Intercon, 9500 MW Solar, 3000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction										
	25,012020	npp	Opp	mind	solar	$\begin{aligned} & \text { Runot } \\ & \text { Resor } \end{aligned}$	Hpro	Tpp	Pswe	Lead + Intercen - Prupelind
	cou0	9517	995	2197	0	18	692	4537	0	17889
dy	02:00	9519	963	2200	0	16	646	3916	0	17213
	00.00	9502	947	2208	0	16	645	3879	0	17245
	09.00	9512	940	2208	0	18	645	3912	0	17297
	04.00	9526	943	2177	0	18	718	4028	0	17530
	6s:00	9517	939	2159	0	18	645	4140	0	17458
20050 - -nomein	0600	9519	943	2130	0	18	645	4303	0	17641
-7	0700	9526	948	1959	39	18	645	4523	0	17613
-	ceso	9535	1013	1656	186	19	868	5016	0	18200
15000 -	0800	9504	1049	1360	1236	28	518	4273	1532	19320
- -reseos	10.00	9503	1065	1395	2617	28	161	4510	1532	20610
mer	11:00	9497	1095	1355	3871	28	46	3686	0	19435
War	12:00	9527	1085	1410	4310	26	48	3099	0	19423
18050	13:00	9525	1077	1586	4210	25	48	4008	0	20354
-	14:000	9516	1076	1855	3473	27	50	4276	0	20266
-	15:00	9527	1085	1803	1911	27	1128	4375	0	19876
5000 - -inutu	16000	9531	1086	1685	556	27	1456	4740	811	19876
	17000	9517	1082	1821	8	27	1814	4891	1532	20591
	18000	9518	1098	1716	3	29	1790	5035	1532	20488
	19.00	9524	1080	1473	3	29	1606	4891	1532	19896
	2000	9514	1085	1560	3	29	1230	4785	1532	19503
	21:00	9512	1095	1922	3	29	1146	4791	1532	19881
	22:00	9525	1089	1977	3	29	614	4813	1532	19435
	23:00	9513	1043	2014	3	26	889	5316	0	18796

Figure 78: Jan 25th Winter Saturday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction

Jan $25^{\text {th }}$ Winter Saturday: 2025, 1,2\% Yearly Growth, Intercon. 12000MW Solar, 7500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction										
	25.01.2020	NPP	CHPP	Wind	Solar	Run-of Bher	Hedro	TPP	$\begin{aligned} & \text { PSHPP } \\ & \text { Gmen } \end{aligned}$	Lead + Intercan. - Etridgad
	00.00	5287	884	5492	0	18	692	5582	0	17889
25000 25.jn - Winter Saturday	02:00	5289	856	5499	0	16	646	4954	0	17213
	ca:00	5279	842	5521	0	16	645	4895	0	17245
	ce:00	5285	835	5521	0	18	645	4931	0	17297
	04:00	5292	838	5441	0	18	718	5102	0	17530
20050	Of:00	5287	834	5398	0	18	645	5235	0	17458
	06.00	5289	838	5326	0	18	645	5443	0	17641
	07:00	5292	842	4899	49	18	645	5912	0	17613
	cesido	5297	901	4139	235	19	868	6834	0	18200
15000	OE.00	5280	932	3401	1561	28	805	5327	1532	18687
- -reder	10:00	5280	946	3488	3305	28	663	4510	1532	19552
-simr	11:00	5276	974	3386	4889	28	603	4421	0	19435
	12:00	5293	964	3524	5445	26	113	4139	0	19423
10050 - -	13:00	5292	958	3965	5317	25	48	4161	0	19641
	14:00	5287	957	4638	4386	27	688	4290	0	20266
-	15:00	5293	964	4508	2414	27	1331	5319	0	19876
	16:00	5295	966	4211	702	27	1456	6423	811	19876
Lin	17:00	5287	962	4551	10	27	1820	6470	1532	20559
	18:00	5288	967	4291	3	29	1790	6811	1532	20488
- 0°	19:00	5291	960	3683	3	29	1606	7033	1532	19896
	20.00	5286	964	3900	3	29	1255	6691	1532	19427
	21:00	5285	965	4805	3	29	1231	5922	1532	19632
(1)										

Figure 79: Jan 25th Winter Saturday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

Figure 80: Feb I Ist Maximum Load Day: As-Is

Feb $1^{5 t}$ Maximum Load Day: 2021, 0,0\% Yearly Growth, Intercon, 624IMW Solar, 2585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \& \& 11.022030 \& Npp \& Orp \& wnd \& Solar \& Runor \& mpro \& TpP \& Psap \& \begin{tabular}{l}
Load + Intericon. \\
+ Broplood
\end{tabular} \\
\hline \& \& 0000 \& 9516 \& 1068 \& 1055 \& 0 \& 29 \& 471 \& 5226 \& 0 \& 17017 \\
\hline \multirow{4}{*}{25000 - \(11 . \mathrm{Feb}\) - Maximum Load Day} \& \& 01.00 \& 9534 \& 991 \& 963 \& 0 \& 27 \& 531 \& 4421 \& 0 \& 16179 \\
\hline \& \& \(0 \times 00\) \& 9540 \& 1001 \& 940 \& 0 \& 28 \& 543 \& 4450 \& 0 \& 16221 \\
\hline \& \& 00.00 \& 9536 \& 991 \& 923 \& 0 \& 28 \& 553 \& 4433 \& 0 \& 16139 \\
\hline \& \& 0:400 \& 9532 \& 993 \& 983 \& 0 \& 28 \& 518 \& 4238 \& 0 \& 16057 \\
\hline \multirow{6}{*}{2000

15000} \& \& cs:00 \& 9540 \& 984 \& 988 \& 0 \& 28 \& 514 \& 4328 \& 0 \& 16112

\hline \& -noman \& 0600 \& 9549 \& 995 \& 1062 \& 0 \& 28 \& 903 \& 4798 \& 0 \& 17081

\hline \& ->" \& 07.00 \& 9542 \& 1033 \& 1162 \& 60 \& 28 \& 1126 \& 5173 \& 0 \& 17925

\hline \& \& ce.00 \& 9559 \& 1102 \& 1140 \& 137 \& 28 \& 1601 \& 5960 \& 0 \& 19278

\hline \& \& 08.00 \& 9540 \& 1201 \& 858 \& 600 \& 44 \& 871 \& 6054 \& 1208 \& 20051

\hline \& -rader \& 10.00 \& 9540 \& 1220 \& 915 \& 1113 \& 46 \& 630 \& 6188 \& 1208 \& 20606

\hline \multirow[t]{2}{*}{} \& -ser \& 11:00 \& 9544 \& 1197 \& 930 \& 1223 \& 46 \& 683 \& 6102 \& 1208 \& 20778

\hline \& -wor \& 12.00 \& 9536 \& 1190 \& 938 \& 1504 \& 46 \& 579 \& 5808 \& 1208 \& 20604

\hline 10050 \& \& 13:00 \& 9545 \& 1183 \& 885 \& 1514 \& 46 \& 492 \& 5677 \& 0 \& 19133

\hline \multirow{6}{*}{5000} \& -om \& 14:00 \& 9536 \& 1182 \& 963 \& 1194 \& 48 \& 1207 \& 6110 \& 0 \& 19940

\hline \& - \& 15:00 \& 9542 \& 1186 \& 885 \& 753 \& 48 \& 1123 \& 6091 \& 0 \& 19423

\hline \& \& 16.00 \& 9520 \& 1207 \& 955 \& 288 \& 48 \& 423 \& 6573 \& 0 \& 18681

\hline \& $$
\operatorname{lin}_{0}
$$ \& 17000 \& 9538 \& 1213 \& 1190 \& 16 \& 48 \& 1899 \& 7146 \& 0 \& 20731

\hline \& \& 18:00 \& 9539 \& 1185 \& 1095 \& 0 \& 48 \& 1679 \& 6379 \& 1208 \& 21132

\hline \& \& 19.00 \& 9540 \& 1187 \& 1232 \& 0 \& 48 \& 1321 \& 6304 \& 1208 \& 20829

\hline \multirow[t]{4}{*}{-} \& \& 20.00 \& 9536 \& 1201 \& 1334 \& - \& 48 \& 1176 \& 5974 \& 1208 \& 20442

\hline \& \& 21:00 \& 9537 \& 1193 \& 1155 \& 0 \& 48 \& 713 \& 5972 \& 0 \& 18517

\hline \& \& 2200 \& 9560 \& 1203 \& 1010 \& 0 \& 48 \& 1045 \& 5912 \& 0 \& 18365

\hline \& \& 23:00 \& 9560 \& 1097 \& 963 \& - \& 45 \& 541 \& 4898 \& 0 \& 16817

\hline
\end{tabular}

Figure 81: Feb IIst Maximum Load Day: 2021, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

	11.023020	nep	arp	wnd	Solar	Runot.	Hpro	Tpp	$\begin{aligned} & \text { Psewp } \end{aligned}$	Lead + Intercen. $+\operatorname{crspenaxd}$
	00000	9780	1058	1055	0	29	376	5226	0	17186
25000 - 11 Febeb Maximum Losd Day	0a,00	9799	991	963	0	27	428	4421	0	16341
	\% 000	9805	1001	940	0	28	436	4450	0	16379
	0300	9801	991	923	0	28	444	4433	0	16295
	9:000	9797	993	983	0	28	409	4238	0	16212
2005015000	csivo	9805	984	988	0	28	406	4328	0	16269
	0600	9814	995	1062	0	28	808	4798	0	17251
	orvo	9807	1033	1162	60	28	1043	5173	0	18107
	ceso	9824	1102	1140	137	28	1565	5927	0	19474
	asmo	9805	1201	858	600	44	849	6054	1208	20294
-	10.00	9805	1220	915	1113	46	607	6188	1208	20848
	11:00	9809	1197	930	1223	46	647	6102	1208	21007
was	12.00	9801	1190	938	1504	46	512	5808	1208	20802
10050	13000	9810	1183	885	1514	46	423	5677	0	19328
5000	14.00	9801	1182	963	1194	48	1147	6110	0	20145
	15:00	9807	1186	885	753	48	1054	6091	0	19619
	16.00	9785	1207	955	288	48	349	6573	0	18871
	17000	9803	1213	1190	16	48	1899	7098	0	20948
	18.00	9804	1185	1095	0	48	1668	6379	1208	21386
	19.00	9805	1187	1232	0	48	1305	6304	1208	21077
	20.00	9800	1201	1334	0	48	1157	5974	1208	20688
	22:00	9802	1193	1155	0	48	636	5972	0	18705
[12000										

Figure 82: Feb IIst Maximum Load Day: 2021 , 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Feb $11^{5 t}$ Maximum Load Day: 202I, 0,5\% Yearly Growth, Iso 624IMW Solar, 2585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Figure 83: Feb I Ist Maximum Load Day: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Feb I ${ }^{\text {st }}$ Maximum Load Day: 2025, I,2\% Yearly Growth, Intercon. 7500MW Solar, 2500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

	11.02 .2020	NPP	O.Pp	wnd	Solar	Runof: Ever	Hpdro	TPP	$\begin{aligned} & \text { Psipp } \\ & \text { Gem } \end{aligned}$	Load + Intercon. + Erifidgord
	00.00	9516	1068	1020	0	29	717	6266	0	18267
	01:00	9534	991	931	0	27	718	5464	0	17378
25050	ce:00	9540	1001	909	0	28	717	5475	0	17389
	caso	9536	991	892	0	28	717	5455	0	17294
	04.00	9532	993	950	0	28	718	5220	0	17206
\wedge	Os:00	9540	984	955	0	28	717	5320	0	17274
20050 -romer	06.00	9549	995	1027	0	28	1020	5977	0	18342
-w	07:00	9542	1033	1124	72	28	1235	6436	0	19271
	cesol	9559	1102	1102	164	28	1601	7417	0	20725
15050	Os.00	9540	1201	830	721	44	1205	6054	1532	20802
-neder	10:00	9540	1220	885	1338	46	1006	6188	1532	21501
-mor	11:00	9544	1197	900	1469	46	1041	6102	1532	21675
-	12:00	9536	1190	907	1807	46	976	5808	1532	21598
10050 - -wal	13:00	9545	1183	856	1819	46	1060	6280	0	20579
-com	14:00	9536	1182	931	1434	48	1510	7115	0	21456
-rom	15:00	9542	1186	856	905	48	1300	7243	0	20875
5050	16:00	9520	1207	924	346	48	717	7662	0	20090
-	17:00	9538	1213	1151	19	48	1899	8786	0	22335
	18.00	9539	1185	1059	0	48	1811	6886	1532	22059
	19:00	9540	1187	1192	0	48	1553	6609	1532	21650
-	20:00	9536	1201	1290	0	48	1458	6150	1532	21181
-\%**)	21:00	9537	1193	1117	0	48	926	7188	0	19908
	22:00	9560	1203	977	0	48	1097	7307	0	19779
	23:00	9560	1097	931	0	45	723	6018	0	18088

Figure 84: Feb IIst Maximum Load Day: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, I0\% NPP Reduction, 0\% CHPP Reduction

Feb II ${ }^{\text {st }}$ Maximum Load Day: 2025, I,2\% Yearly Growth, Intercon, 9500 MW Solar, 3000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction

Figure 85: Feb IIst Maximum Load Day: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction

Figure 86: Feb IIst Maximum Load Day: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

Figure 87: Apr 8th Spring Wednesday: As-Is

Apr $8^{\text {th }}$ Spring Wednesday: 2021, 0,0\% Yearly Growth, Intercon. 6241 MW Solar, 2585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction										
	ce.042020	npp	OHPP	Whd	Solar	Run-of: Biver	Hpdro	TPP	$\begin{aligned} & \text { PSHPT } \\ & \text { Gen. } \end{aligned}$	lead + Interican. + Retiel logd
	0000	7960	680	542	0	40	1470	3723	0	15028
20050 08Apr - Spring Wednesdizy	01:00	7973	635	601	0	40	730	3613	0	13417
	00:00	7998	631	677	0	40	676	3607	0	13455
	03:00	7962	627	625	0	40	712	3485	0	13317
18000 —	04:00	7964	641	451	0	40	783	3254	0	12752
	Os:00	7960	640	342	0	40	1000	3657	0	13384
	06000	7986	629	288	78	40	1076	3499	0	12902
	0700	8013	696	212	225	40	1394	3542	0	13717
	ces.00	8035	752	143	822	52	1510	3452	0	14852
12050	08:00	8013	750	71	1923	49	944	3205	0	14790
	10:00	8023	694	158	2923	54	629	2722	0	15533
10050	11:00	7998	723	158	3591	54	192	2734	0	15327
- -wom	12:00	7986	718	217	3920	53	191	2749	0	15431
s000	13:00	7981	720	197	3920	48	251	2711	0	15263
6000	14:00	7977	714	202	3828	48	562	2617	0	16076
${ }^{6050}$	15:00	7970	722	219	3517	50	373	2634	0	15550
4050 - - inertans	16:00	7993	724	283	2862	50	256	2632	0	14055
-	17:00	7994	720	241	1925	55	1002	3037	0	14628
2050	1800	7979	765	177	874	55	1175	3524	742	15274
-	19:00	8007	777	278	190	56	1107	3928	1208	14986
	20:00	7991	771	229	13	58	1432	4500	1208	15059
	21:00	7971	774	431	0	57	2229	4710	1208	18507

Figure 88: Apr 8th Spring Wednesday: $202 \mathrm{I}, 0,0 \%$ Yearly Growth, Intercon. 6,24I MW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

	ce.042030	NPP	OFPP	wind	Solar	Run-of: Rever	Hpdro	TPP	PSHP Gm	Lead t Intercen. + Ferpelgad
	00.00	8181	680	542	0	40	1470	3634	0	15161
	02:00	8195	635	601	0	40	643	3613	0	13551
20050 O8.Apr - Spring Wednesday	$\omega \times 0$	8220	631	677	0	40	583	3607	0	13585
	caso	8183	627	625	0	40	618	3485	0	13444
18000 —	04:00	8185	641	451	0	40	725	3221	0	12882
	Os:00	8181	640	342	0	40	1000	3565	0	13513
16000 -romem	06.00	8208	629	288	78	40	1076	3414	0	13038
	07:00	8235	696	212	225	40	1394	3459	0	13856
	cesol	8258	752	143	822	52	1510	3369	0	14991
$12000=-450$	cesod	8235	750	71	1923	49	873	3205	0	14942
-	10:00	8245	694	158	2923	54	551	2722	0	15678
10050 - -sor	11:00	8220	723	158	3591	54	191	2734	0	15548
-Wad	12:00	8208	718	217	3920	53	190	2749	0	15652
${ }^{8050}$	13:00	8203	720	197	3920	48	229	2711	0	15463
6000 \square	14:00	8198	714	202	3828	48	516	2617	0	16252
${ }^{6000}$	15:00	8192	722	219	3517	50	346	2634	0	15745
4000 - -sinthat	16:00	8215	724	283	2862	50	246	2632	0	14266
	17:00	8216	720	241	1925	55	927	3037	0	14775
2000	18.00	8201	765	177	874	55	1137	3524	742	15457
	19:00	8230	777	278	190	56	1063	3928	1208	15165
	20.00	8213	771	229	13	58	1432	4453	1208	15234
ค)	21:00	8193	774	431	0	57	2229	4646	1208	18664
	22:00	8208	777	468	0	57	1061	4440	1208	16503
	23:00	8191	705	519	0	51	535	4665	737	15240

Figure 89: Apr 8th Spring Wednesday: 202 I, 0,5\% Yearly Growth, Intercon. 6,24 I MW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Apr $8{ }^{\text {ch }}$ Spring Wednesday: 2021, 0,5\% Yearly Growth, Iso 624IMW Solar, 2585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction										
	ceacrexa	Npp	OPP	mind	solar	Runot	mpro	Tpp		Lead + Intercon. + Rytilogd
	0000	8181	680	542	0	40	1207	3576	0	14874
	01:00	8195	635	601	0	40	601	3613	0	13554
20050 - 08,Apr - Spring Wednesdiay	0×00	8220	631	677	0	40	527	3607	0	13549
	03.00	8183	627	625	0	40	590	3485	0	13421
18000 -	09.00	8185	641	451	0	40	783	3301	0	13020
,	06.00	8181	640	342	0	40	802	3507	0	13249
15000 - -noren	0600	8208	629	288	78	40	757	3320	0	12642
-m	07.00	8235	696	212	225	40	1191	3282	0	13457
	ceso	8258	752	143	822	52	1129	3306	0	14563
12050 -	Cesob	8235	750	71	1923	49	986	3205	0	15053
	1000	8245	694	158	2923	54	360	2722	0	15497
$10000 \times$ -	11.00	8220	723	158	3591	54	192	2734	0	15555
wad	1200	8208	718	217	3920	53	190	2554	0	15451
8000	13:00	8203	720	197	3920	48	${ }^{223}$	2711	0	15441
0000	14:00	8198	714	202	3828	48	340	2617	0	16064
(000	15:00	8192	722	219	3517	50	318	2634	0	15718
4000 - -imerotim	15:00	8215	724	283	2862	50	253	2632	0	14269
Eismm	17000	8216	720	241	1925	55	538	3037	0	14379
2000	18.00	8201	765	177	874	55	1054	3524	742	15380
	19.00	8230	777	278	190	56	951	3928	1208	15062
- ${ }^{+\infty}$	2000	8213	771	229	13	58	1432	4692	1208	15506
	23:00	8193	774	431	0	57	2229	4265	1208	18294
	2200	8208	777	468	0	57	1135	4451	1208	16570
	23.00	8191	705	519	0	51	629	4665	737	15314

Figure 90: Apr 8th Spring Wednesday: 202I, 0,5\% Yearly Growth, Iso 6,24 I MW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Apr $8^{\text {th }}$ Spring Wednesday: 2025, 1,2\% Yearly Growth, Intercon. 7500 MW Solar, 2500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction										
	crecerezo	npp	Capp	Whnd	Solar	$\begin{array}{\|l\|} \hline \text { Run-of } \\ \text { River } \end{array}$	urdro	TPP	$\begin{aligned} & \text { Psipp } \\ & \text { Gen. } \end{aligned}$	Inad + Intericon + BCHE log
	0000	7960	680	524	0	40	1470	4723	0	16011
	01:00	7973	635	581	0	40	785	4572	0	14410
25050 ObApr - Spring Wednesdiy	00:00	7998	631	655	0	40	775	4490	0	14416
	03:00	7962	627	605	0	40	783	4375	0	14257
	04:00	7964	641	436	0	40	783	4228	0	13711
	O6:00	7960	640	331	0	40	1000	4623	0	14338
20050 - -rowe	06:00	7986	629	279	94	40	1076	4501	0	13910
	07:00	8013	696	205	270	40	1394	4534	0	14747
N	ces.00	8035	752	138	987	52	1510	4324	0	15894
$15000 \times$ -	0e:00	8013	750	69	2311	49	1181	3704	0	15912
Hentrol-ainer	10.00	8023	694	152	3513	54	1118	2722	0	16607
-ser	11:00	7998	723	152	4315	54	263	2734	0	16117
	12:00	7986	718	210	4711	53	198	2749	0	16221
10050 -	13:00	7981	720	190	4711	48	366	2711	0	16163
-om	14:00	7977	714	195	4600	48	752	2617	0	17032
-	15:00	7970	722	212	4226	50	497	2634	0	16377
	16:00	7993	724	274	3440	50	647	2632	0	15013
-	17:00	7994	720	233	2313	55	1311	3434	0	15714
	18:00	7979	765	171	1050	55	1356	3858	978	16195
	19000	8007	777	269	228	56	1153	4671	1532	16129
\cdots	20.00	7991	771	221	16	58	1432	5475	1532	16353
-1/	21:00	7971	774	417	0	57	2229	5561	1532	19667
	22:00	7987	777	452	0	57	1135	5268	1532	17492
	23:00	7970	705	502	0	51	815	5167	972	16018

Figure 91: Apr 8th Spring Wednesday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Figure 92: Apr 8th Spring Wednesday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction

Apr $8^{\text {dh }}$ Spring Wednesday: 2025, 1,2\% Yearly Growth, Intercon. 12000MW Solar, 7500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction										
	ces.042020	npp	OPPP	Whd	Solar	Run-of Eiver	Hydro	TPP	PSHP Gm.	Lead + Intercan. + Prifelond
	00.00	4422	544	1571	0	40	1470	7349	0	16011
$25000 \sim$ O8.Apr - Spring Wednesdzy	02:00	4430	508	1743	0	40	785	7080	0	14410
	02:00	4444	505	1964	0	40	775	6862	0	14416
	ca,00	4424	502	1814	0	40	783	6829	0	14257
	04:00	4425	513	1307	0	40	783	7024	0	13711
	Os:00	4422	512	993	0	40	1000	7626	0	14338
20050 - -mom	06.00	4437	503	836	151	40	1076	7562	0	13910
A	07:00	4452	557	614	433	40	1394	7663	0	14747
	cesol	4464	602	414	1580	52	1510	7177	0	15884
$15000 \times$ -	ces.00	4452	600	207	3698	49	1181	5890	0	15912
—recer	10:00	4457	555	457	5621	54	1218	3914	0	16607
$-s a$	11:00	4444	578	457	6904	54	783	3019	0	16117
	12:00	4437	574	629	7538	53	512	2749	0	16088
10050	13:00	4434	576	571	7538	48	749	2711	0	16063
-om	14:00	4432	571	586	7359	48	1210	2617	0	16952
-	15:00	4428	578	636	6762	50	1015	2844	0	16377
5050 - -iontoat	16.00	4441	579	821	5504	50	849	3516	0	15013
\square	17:00	4441	576	700	3701	55	1311	5277	0	15714
	18:00	4433	612	514	1680	55	1356	6585	978	16195
	19000	4449	622	807	366	56	1153	7710	1532	16129
	20.00	4440	617	664	25	58	1432	8728	1532	16353
	21:00	4429	619	1250	0	57	2229	8425	1532	19667
	22:00	4437	622	1357	0	57	1135	8068	1532	17492
	23:00	4428	564	1507	0	51	815	7845	972	16018

Figure 93: Apr 8th Spring Wednesday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

Figure 94: Apr 19th Spring Sunday: As-Is

Apr $19^{\text {ch }}$ Spring Sunday: 2021, 0,0\% Yearly Growth, Intercon. 624IMW Solar, 2585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Figure 95: Apr 19th Spring Sunday: 202 I , 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, I0\% NPP Reduction, 0\% CHPP Reduction

Apr $19^{\text {ch }}$ Spring Sunday: 202I, 0,5\% Yearly Growth, Intercon. 624 IMW Solar, 2585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

	19.042020	NPP	CHPP	Whnd	Solar	Run-of Fiver	Hydro	TPP	$\begin{aligned} & \text { PStwo } \\ & \text { Gem. } \end{aligned}$	Lead + Intericon. - Prisplogd
	00.00	8521	498	497	0	42	1385	3420	0	15109
	01:00	8525	491	510	0	18	722	3217	0	13425
18050	00:00	8157	496	473	0	17	702	2591	0	12348
	0300	8027	490	495	0	17	681	2734	0	12223
16050	04:00	8073	485	340	0	17	889	2659	0	12537
	OG:00	8041	489	259	0	19	750	2669	0	12179
14000 - -momem	06:00	8067	498	185	84	21	750	2683	0	12210
-m	07:00	8046	514	177	255	22	750	2642	0	12311
12000 -	cesion	8025	558	219	627	49	649	2398	0	12285
\square-4so	09.00	8069	534	170	1427	28	733	2388	0	13656
10050 - -noseor	10.00	8026	500	162	2089	28	233	2358	0	13386
-sar	11:00	7996	495	89	2769	52	198	2367	0	14020
8050	12:00	7612	488	64	3134	50	196	2376	0	13924
	13:00	7480	489	15	3167	50	195	2397	0	13783
6000	14:00	7342	490	59	2613	50	200	2389	0	13262
-n	15:00	7353	490	236	2444	52	199	2389	0	13138
4000	16:00	7355	500	162	1968	52	212	2500	0	12563
	17:00	7378	550	98	1389	52	690	2499	0	12307
2000	18:00	7350	555	214	681	47	928	2532	883	13120
	19:00	7360	559	217	186	49	1050	2926	971	12607
\cdots	2000	7325	595	170	17	47	1843	3150	1208	14560
	21:00	7368	614	219	0	46	1632	3911	1208	15697
	22:00	7371	609	140	0	46	906	4038	1208	13909
	23:00	7428	605	209	0	46	1204	3843	1208	14967

Figure 96: Apr 19th Spring Sunday: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

	19,042020	NPP	OHPP	wnd	Solar	Run-of. Elver	Hpdro	TPP	PSHP sen	Lead + Intercon. + Fctir jond
	00.00	8521	498	497	0	42	1061	3300	0	14698
	01:00	8525	491	510	0	18	544	3217	0	13290
185050	0 covo	8157	496	473	0	17	647	2591	0	12346
	caso	8027	490	495	0	17	557	2734	0	12131
15050	04:00	8073	485	340	0	17	681	2607	0	12302
	0s:00	8041	489	259	0	19	730	2602	0	12105
14050 - -romen	06:00	8067	498	185	84	21	552	2595	0	11928
—m	07:00	8046	514	177	255	22	491	2604	0	12036
12050	ceson	8025	558	219	627	49	748	2546	0	12539
	cesom	8069	534	170	1427	28	659	2388	0	13594
10050 - -noderer	10:00	8026	500	162	2089	28	202	2358	0	13348
-sar	11:00	7996	495	89	2769	52	201	2367	0	14019
8050	12:00	7612	488	64	3134	50	195	2376	0	13915
	13:00	7480	489	15	3167	50	192	2397	0	13772
6050	14:00	7342	490	59	2613	50	385	2389	0	13437
-rom	15:00	7353	490	236	2444	52	195	2389	0	13130
4050	16:00	7355	500	162	1968	52	411	2500	0	12765
—inctinim	17:00	7378	550	98	1389	52	578	2499	0	12200
2050	18:00	7350	555	214	681	47	916	2532	883	13128
	19:00	7360	559	217	186	49	1117	2926	971	12683
-	20:00	7325	595	170	17	47	1687	3150	1208	14422
-0\%	21:00	7368	614	219	0	46	1632	3699	1208	15483
	22:00	7371	609	140	0	46	892	4038	1208	13898
	23:00	7428	605	209	0	46	1028	3843	1208	14815

Figure 97: Apr 19th Spring Sunday: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Apr 19 ch Spring Sunday: 2025, 1,2\% Yearly Growth, Intercon. 7500 MW Solar, 2500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction										
	13,042030	NPP	arp	Whad	Solar	$\begin{aligned} & \text { Run-of. } \\ & \text { Whoor } \end{aligned}$	Hprro	Tpp	pswp	Lead + Intercan. * BCHE logd
	∞	8291	498	481	0	42	1385	4490	0	15931
	01:00	8294	491	493	0	18	750	4268	0	14258
18050 - 19Apr - Spring Sundzy	∞	7936	496	457	0	17	750	3542	0	13111
	0×00	7810	490	479	0	17	751	3664	0	12990
A	04:00	7855	485	329	0	17	888	3627	0	13276
	06.00	7824	489	250	0	19	750	3640	0	12925
	06000	7849	498	179	101	21	750	3640	0	12960
-	onos	7828	514	171	307	22	750	3571	0	13058
12050 CIMre	ceso	7808	558	212	754	49	748	3189	0	13077
	0800	7851	534	164	1715	28	993	2850	0	14442
10000 - -rater	1000	7809	500	157	2510	28	750	2454	0	14197
-	11:00	7780	495	86	3328	52	536	2367	0	14698
8000 nnan	12:00	7406	488	62	3766	50	301	2376	0	14454
	13:00	7277	489	14	3806	50	281	2397	0	14305
5000	14:000	7143	490	57	3140	50	521	2389	0	13909
	15:00	7154	490	229	2937	52	496	2389	0	13722
4000	1600	7156	500	157	2365	52	748	2564	0	13356
	17000	7178	550	95	1669	52	957	2958	0	13111
${ }^{2000}$	1800	7151	555	207	818	47	1194	2532	1164	13597
	19.00	7161	559	210	${ }^{223}$	49	1258	3154	1280	13182
	20.00	7127	595	164	21	47	1848	3877	1532	15416
	21:00	7169	614	212	0	46	1632	4672	1532	16576
	2200	7172	609	136	0	46	1011	4656	1532	14752
	$23: 00$	7227	605	202	0	46	1358	4197	1532	15591

Figure 98: Apr 19th Spring Sunday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Apr $19^{\text {ch }}$ Spring Sunday: 2025, 1,2\% Yearly Growth, Intercon. 9500 MW Solar, 3000MW Wind, 10% NPP Reduction, 10% CHPP Reduction

Figure 99: Apr I9th Spring Sunday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, I0\% CHPP Reduction

Apr $19^{\text {th }}$ Spring Sunday: 2025, 1,2\% Yearly Growth, Intercon. I2000MW Solar, 7500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

		19.042020	nPp	OHPP	Wind	Solar	Run-of. River	Hpdro	TPP	PSHP Gm	read + Intarcon + Ertiplogd
		00.00	4606	398	1443	0	42	1385	7312	0	15931
150000 19Apr - Spring Sundzy		02:00	4608	393	1479	0	18	750	7067	0	14258
		ce:00	4409	397	1371	0	17	750	6254	0	13111
		crico	4339	392	1436	0	17	751	6276	0	12990
160501400012050	-ramen - ${ }^{-7}$	04:00	4364	388	986	0	17	888	6558	0	13276
		O6:00	4347	391	750	0	19	750	6715	0	12925
		0600	4361	398	536	162	21	750	6811	0	12960
		07:00	4349	411	514	491	22	750	6626	0	13068
	-	cesol	4338	446	636	1206	49	748	5896	0	13077
12050		0e.00	4362	427	493	2743	28	993	5089	0	14442
10050	—reder	10:00	4339	400	471	4016	28	750	4204	0	14197
		11:00	4322	396	257	5325	52	750	3542	0	14698
8050	-wat	12:00	4115	390	186	6025	50	751	2932	0	14454
		13:00	4043	391	43	6090	50	750	2948	0	14305
6000	-com	14:00	3969	392	171	5023	50	751	3433	0	13909
	-	15:00	3975	392	686	4700	52	750	3193	0	13722
4050		16:00	3976	400	471	3784	52	748	4111	0	13356
		17:00	3988	440	286	2671	52	957	5067	0	13111
2050		18:00	3973	444	621	1309	47	1204	4887	1164	13578
		19:00	3979	447	629	357	49	1258	5896	1280	13182
		20.00	3960	476	493	33	47	1848	6823	1532	15416
		22:00	3983	491	636	0	46	1632	7557	1532	16576
		22:00	3985	487	407	0	46	1011	7694	1532	14752
		23:00	4015	484	607	0	46	1358	7125	1532	15591

Figure 100: Apr 19th Spring Sunday: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

Figure 101: Apr 25th Spring Saturday: As-Is

Figure 102: Apr 25th Spring Saturday: 202 I , 0,0\% Yearly Growth, Intercon. 6,24 I MW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Apr $25^{\text {th }}$ Spring Saturday: 202I, 0,5\% Yearly Growth, Intercon. 624 IMW Solar, 2585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Figure I03: Apr 25th Spring Saturday: 202 I, 0,5\% Yearly Growth, Intercon. 6,24 I MW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

	25,042020	npp	OHPP	Whnd	Solar	Run-of. Fiver	Hpdro	TTP	$\begin{aligned} & \text { PStipp } \\ & \text { Gen. } \end{aligned}$	Lead + Intercen. - Prtsigend
	como	7717	608	1689	0	43	190	3504	64	13846
Or Spring Sotur	01:00	7743	603	1590	0	18	153	2971	0	12947
18050 - SApr - Spring Satur	co:00	7706	555	1704	0	18	155	2653	0	12589
	caso	7707	552	1519	0	18	153	3058	0	12765
	04:00	7690	552	1307	0	18	198	3184	0	12769
-	06:00	7707	556	1179	0	20	198	3231	0	12721
$14000 \times-$-rovan	0600	7709	549	1192	94	22	197	3161	0	12774
-T"	07:00	7713	544	940	292	22	260	3032	0	12671
12050	cesico	7689	549	716	842	46	578	2883	0	12828
-450	Oesios	7706	524	810	1727	53	190	2829	0	14162
10050 - -neater	10.00	7732	462	899	2797	37	155	2854	0	14852
-sar	12:00	7703	434	992	3407	46	190	2906	0	15898
${ }^{8050}$ - -wat	12:00	7702	444	1098	3547	44	155	2646	0	15546
	13:00	7679	438	1206	3527	44	190	2459	0	15552
6050	14:00	7675	434	1256	3128	44	190	2809	0	15308
—nom	15:00	7681	437	1120	2865	46	237	2983	0	15561
4050	16:00	7706	472	1157	2380	46	190	2952	0	15018
	17:00	7698	507	1199	1674	46	190	2924	573	14686
2050	18:00	7702	493	1288	864	46	190	3964	592	14798
	19000	7696	509	1315	237	48	648	4453	594	15499
-	20:00	7678	500	1443	25	48	414	4474	1208	15167
-\%	22:00	7663	504	1595	0	47	1307	4304	1208	17000
	22:00	7730	500	1531	0	47	818	3686	1208	15544
	23:00	7736	492	1433	0	46	654	3321	1208	14904

Figure 104: Apr 25th Spring Saturday: 202I, 0,5\% Yearly Growth, Iso 6,24I MW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

	25.04.2020	npp	OHPP	Whnd	Solar	Run-of River	Hpdro	TPP	$\begin{aligned} & \text { PSIFP } \\ & \text { Gmen } \end{aligned}$	Lead + Intercen + Frife loxd
	00.00	7509	608	1633	0	43	862	4215	84	15041
	01:00	7534	603	1538	0	18	696	3654	0	13873
20050 - 2SApr - Spring Saturday	0000	7498	555	1648	0	18	697	3243	0	13445
	casido	7499	552	1469	0	18	696	3389	0	13354
18000	04:00	7482	552	1264	0	18	735	3625	0	13452
-	Of:00	7499	556	1140	0	20	735	3742	0	13493
16050 -moncon	06000	7501	549	1152	113	22	733	3623	0	13594
${ }_{14050} \times-\mathrm{m}$	07:00	7504	544	910	351	22	702	3564	0	13428
,	cesion	7481	549	693	1012	46	697	3325	0	13345
12000	ce:00	7498	524	783	2076	53	1068	2993	0	15322
-redter	10:00	7523	462	869	3361	37	155	2998	0	15350
10050 - -sor	11:00	7495	434	960	4094	46	236	3122	0	16597
	12:00	7493	444	1062	4263	44	155	3024	0	16470
\$050 - - -mad	13:00	7472	438	1167	4239	44	240	2860	0	16535
-	14:00	7467	434	1214	3759	44	241	2886	0	15894
6050	15:00	7474	437	1083	3443	46	491	2983	0	16215
4050 -	16:00	7498	472	1119	2861	46	389	3084	0	15570
$=1 \text { nim }$	17:00	7490	507	1160	2011	46	480	3300	755	15702
2000	18:00	7494	493	1245	1038	46	721	4140	780	15696
	19:00	7488	509	1271	284	48	1084	4570	783	16120
	20.00	7470	500	1395	30	48	1096	4908	1532	16353
	21:00	7456	504	1543	0	47	1580	4816	1532	17847
	22:00	7521	500	1481	0	47	1314	4120	1532	16587
	23:00	7527	492	1386	0	46	1276	3421	1532	15679

Figure 105: Apr 25th Spring Saturday: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

	25.04.2020	NPP	O.Pp	wind	Solar	Run-of Eiver	Hepdro	TPP	PSHF sm	Lead + Intercen. + ECtie jogd
	00.00	7509	547	1960	0	43	862	3949	84	15041
	01:00	7534	543	1846	0	18	696	3407	0	13873
20000 2SApr - Spring Saturday	00:00	7498	500	1977	0	18	663	3003	0	13445
	0^{8300}	7499	497	1763	0	18	696	3150	0	13354
18050	04:00	7482	497	1517	0	18	735	3427	0	13452
~	06:00	7499	500	1369	0	20	735	3569	0	13493
16050 -ramen	06000	7501	494	1383	144	22	733	3417	0	13594
${ }_{14050} \sim-m$	07:00	7504	490	1091	444	22	702	3343	0	13428
	ces:00	7481	494	831	1281	46	697	2972	0	13345
12050	Oes.00	7498	472	940	2629	53	412	2991	0	15322
-	10:00	7523	416	1043	4258	37	155	2584	0	15961
10050 - - sar	11:00	7495	391	1151	5185	46	190	2418	0	17088
—wat	12:00	7493	400	1274	5400	44	155	2057	0	16809
${ }^{8050}$ - -mon	13:00	7472	394	1400	5369	44	190	2055	0	17000
6050	14:00	7467	391	1457	4761	44	190	2365	0	16524
6000	15:00	7474	393	1300	4361	46	204	2983	0	17019
4000 - -anathat	16:00	7498	425	1343	3623	46	190	2974	0	16200
	17:00	7490	456	1391	2547	46	190	3044	755	15874
2050	18:00	7494	444	1494	1315	46	481	4140	780	15932
	19000	7488	458	1526	360	48	1007	4453	783	16205
$1-6.60$	20:00	7470	450	1674	38	48	1096	4671	1532	16353
	21:00	7456	454	1851	0	47	1580	4558	1532	17847
	22:00	7521	450	1777	0	47	1314	3874	1532	16587
	23:00	7527	443	1663	0	46	1222	3321	1532	15753

Figure 106: Apr 25th Spring Saturday: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction

Apr $25^{\text {ch }}$ Spring Saturday: 2025, 1,2\% Yearly Growth, Intercon, I 2000 MW Solar, 7500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

Figure 107: Apr 25th Spring Saturday: 2025, 1,2\% Yearly Growth, Intercon. 12,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

May $10^{\text {th }}$ Minimum Load Day: As-ls										
	10.052020	nvp	arp	wnd	solar	Runcot. Werer	Hpdro	Tp	peser	Load + Intrican. - Fstreland
	0000	7649	621	156	0	48	816	3500	689	13549
May - Minimum Loid Day	02.00	7664	617	109	0	47	548	3202	0	12128
	∞ c.00	7579	609	105	0	48	350	3154	0	11843
	09.00	7572	616	151	0	48	176	3018	0	11467
A	04:00	7585	613	138	0	49	151	3064	0	11132
${ }^{14000}$	06.00	7610	612	175	0	49	421	3021	0	11867
- -man	0600	7617	611	249	53	49	211	3025	0	11701
-2000	07.00	7625	613	181	228	49	222	2932	0	11691
一400	ceso	7612	619	112	599	49	155	2922	0	11592
10050	0800	7565	615	82	1255	39	415	2732	0	12790
- -mater	1000	7541	618	59	1829	39	155	2743	0	12686
3000 - - -	11.00	7345	619	61	1838	38	339	2741	0	12615
-was	12.00	7399	623	107	2138	51	533	2753	0	13153
4000	13:00	7366	619	175	1760	50	850	2771	0	13491
- -om	14.00	7407	614	308	1710	50	818	2771	0	13717
${ }_{4000}$	15:00	7389	618	497	1595	51	529	2769	0	13234
	16:00	7367	618	253	1405	51	534	2755	0	12647
2000 - - -insim	17.00	7371	623	252	1188	51	732	2744	\bigcirc	12665
2000	1800	7367	620	226	599	51	641	3026	0	12318
	19.50	7360	619	598	211	51	736	${ }^{3141}$	1208	13670
	2000	7370	621	620	31	51	692	3184	1208	13097
	2200	7410	620	666	0	39	1228	3235	1208	13796
	22.00	7368	612	595	0	53	1647	2978	1208	15210
	2300	7268	622	532	0	51	684	2973	1208	13662

Figure 108: May 10th Minimum Load Day: As-Is

May $10^{\text {th }}$ Minimum Load Day: 2021, 0,0\% Yearly Growth, Intercon. 624IMW Solar, 2585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

	10.052020	nep	OPPP	mand	solar	Run-of. Rever	Hrdo	trp	Psam	Lead + Intercan. + BHR jond
	0000	6884	621	379	0	48	1105	3500	689	13296
10 Mzy . Minimum Lord Day	01:00	6898	617	265	0	47	1054	3307	0	12128
	$\infty \times 0$	6821	609	255	0	48	918	3194	0	11843
	03.00	6815	616	367	0	48	718	3018	0	11467
	04.00	6827	613	335	0	49	712	3064	0	11132
	cs:00	6849	612	425	0	49	932	3021	0	11867
- -noma	0600	6855	611	605	74	49	596	3025	0	11701
	Or.00	6863	613	439	320	49	634	2932	0	11691
	ceso	6851	619	272	842	49	514	2922	0	11592
10000 -	Cesod	6809	615	199	1763	39	546	2732	0	12790
	10.000	6787	618	143	2570	39	155	2743	0	12757
8000	11:00	6611	619	148	2582	38	318	2741	0	12692
-was	12000	6659	623	260	3004	51	427	2753	0	13325
6000	13.00	6629	619	425	2473	50	727	2771	0	13594
-om	14:000	6666	614	748	2403	50	610	2771	0	13901
${ }_{4000}$	15:00	6650	618	1207	2241	51	295	2769	0	13617
	16.00	6630	618	614	1974	51	459	2755	0	12766
2000 - $\square^{\text {aram }}$	17000	6634	623	612	1669	51	628	2744	0	12665
2000	18000	6630	620	549	842	51	812	3026	0	12318
	${ }^{19,00}$	6624	619	1452	296	51	533	3141	1208	13670
	20000	6633	621	1505	44	51	531	3184	1208	13097
	21000	6669	620	1617	0	39	1035	3235	1208	13812
	2200	6631	612	1445	0	53	1542	2978	1208	15217
	23:00	6541	622	1292	0	51	651	2973	1208	13662

Figure 109: May 10th Minimum Load Day: 202I, 0,0\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 10\% NPP Reduction, 0\% CHPP Reduction

Figure IIO: May IOth Minimum Load Day: 202I, 0,5\% Yearly Growth, Intercon. 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

	10.05.2020	NPP	OHPP	wnd	Solar	Run-of. Exiver	Hpdro	TTP	PSHP Gm.	Load + Intericon. + Frisplogd
	00.00	7075	621	379	0	48	1012	3500	689	13405
	02:00	7089	617	265	0	47	997	3202	0	12172
16050 (10. May - Minimum Load Day	00.00	7011	609	255	0	48	908	3154	0	11937
	03:00	7004	616	367	0	48	756	3018	0	11697
	04:00	7016	613	335	0	49	653	3064	0	11256
14050	0s:00	7039	612	425	0	49	590	3021	0	11665
-mercon	Os.00	7046	611	605	74	49	552	3025	0	11792
C -	07:00	7053	613	439	320	49	445	2932	0	11693
2000 - - -	cesom	7041	619	272	842	49	255	2922	0	11538
16050	cesion	6998	615	199	1763	39	410	2732	0	12781
-redeor	10.00	6975	618	143	2570	39	155	2743	0	12960
8050 - - -	11:00	6794	619	148	2582	38	286	2741	0	12854
	12:00	6844	623	260	3004	51	352	2753	0	13375
6050	13:00	6814	619	425	2473	50	730	2771	0	13775
- -oom	14:00	6851	614	748	2403	50	505	2771	0	14025
4050	15:00	6835	618	1207	2241	51	254	2769	0	13794
	16:00	6814	618	614	1974	51	527	2755	0	13060
	17:00	6818	623	612	1669	51	190	2636	0	12318
2000 -	18:00	6814	620	549	842	51	893	3026	0	12540
	19:00	6808	619	1452	296	51	266	3141	1208	13607
	20:00	6817	621	1505	44	51	622	3184	1208	13367
	21:00	6854	620	1617	0	39	970	3235	1208	13879
	22:00	6815	612	1445	0	53	1362	2978	1208	15227
	23:00	6723	622	1292	0	51	704	2973	1208	13881

Figure I II: May IOth Minimum Load Day: 202I, 0,5\% Yearly Growth, Iso 6,24IMW Solar, 2,585MW Wind, 7,5\% NPP Reduction, 0\% CHPP Reduction

Figure II2: May IOth Minimum Load Day: 2025, I,2\% Yearly Growth, Intercon. 7,500MW Solar, 2,500MW Wind, I0\% NPP Reduction, 0\% CHPP Reduction

Figure II3: May IOth Minimum Load Day: 2025, I,2\% Yearly Growth, Intercon. 9,500MW Solar, 3,000MW Wind, 10\% NPP Reduction, 10\% CHPP Reduction

Figure II4: May IOth Minimum Load Day: 2025, I,2\% Yearly Growth, Intercon. I2,000MW Solar, 7,500MW Wind, 50\% NPP Reduction, 20\% CHPP Reduction

[^0]: ${ }^{1}$ RES curtailment requirement that our model has resulted has been compared with Ukrenergo's announced RES curtailment levels. As declared in Ukrenergo's weekly operational reports of past 12 months, curtailed RES energy was around 23GWh (totally 23 hours in different months) in last 12 months. Comparison of these figures is used for validation of the developed model.
 ${ }^{2}$ Cross-border energy exchanges per hour have been restrained to figures between +400MW and -I00MW (Per histogram analysis, 80% of all hours) for hours of future years. (In isolated mode of operation scenarios, cross-border exchanges have been assumed to be zero for all hours).

[^1]: ${ }^{3}$ Level of RES to be energized as foreseen by Ukrenergo for the end of October 2021.
 I3 | FLEXIBILITY ASSESSMENT FOR RES PENETRATION SCENARIOS

[^2]: ${ }^{4}$ ESP team welcomes comments and improvement suggestions on this comparative review as not all details for reflected in the available documents.
 USAID.GOV

[^3]: ${ }^{6}$ Cross-border energy exchanges per hour have been restrained to figures between +400 MW and - 100 MW (Per histogram analysis, 80% of all hours) for hours of future years. (In isolated mode of operation scenarios, cross-border exchanges have been assumed to be zero for all hours).
 19 | FLEXIBILITY ASSESSMENT FOR RES PENETRATION SCENARIOS

[^4]: ${ }^{7}$ EPRI, Electric Power System Flexibility, Challenges and Opportunities

[^5]: ${ }^{8}$ IRENA, 2017, Power System Flexibility for The Energy Transition
 USAID.GOV

[^6]: 35 | FLEXIBILITY ASSESSMENT FOR RES PENETRATION SCENARIOS

[^7]: ${ }^{9}$ Calculated impact in total is relatively low, between 6% to 14% of the existing yearly total net cross-border exchanges with Russia system, depending on the scenario.

[^8]: ${ }^{10}$ https://ua.energy/media/pres-tsentr/pres-relizy/do-kintsya-2020-roku-vyrobnytstvo-elektroenergiyi-z-vde-dorivnyuvatyme-I3-generatsiyi-aes-ta-24-tes/
 USAID.GOV

[^9]: ${ }^{13}$ RES curtailment requirement that our model has resulted has been compared with Ukrenergo's announced RES curtailment levels. As declared in Ukrenergo's weekly operational reports of past 12 months, curtailed RES energy was around 23GWh (totally 23 hours in different months) in last 12 months. Comparison of these figures is used for validation of the developed model.
 ${ }^{14}$ Cross-border energy exchanges per hour have been restrained to figures between +400MW and -I00MW (Per histogram analysis, 80% of all hours) for each hours of future years. (In isolated mode of operation scenarios, cross-border exchanges have been assumed to be zero for all hours)
 USAID.GOV

